TY - JOUR
T1 - Fully covariant van Dam-Veltman-Zakharov discontinuity, and absence thereof
AU - Porrati, M.
N1 - Funding Information:
We should like to thank G. Dvali, A. Lue, and C. Deffayet for interesting comments. This work is supported in part by NSF grant PHY-0070787.
PY - 2002/5/16
Y1 - 2002/5/16
N2 - In both old and recent literature, it has been argued that the celebrated van Dam-Veltman-Zakharov (vDVZ) discontinuity of massive gravity is an artifact due to linearization of the true equations of motion. In this Letter, we investigate that claim. First, we exhibit an explicit - albeit somewhat arbitrary - fully covariant set of equations of motion that, upon linearization, reduce to the standard Pauli-Fierz equations. We show that the vDVZ discontinuity still persists in that non-linear, covariant theory. Then, we restrict our attention to a particular system that consistently incorporates massive gravity: the Dvali-Gabadadze-Porrati (DGP) model. DGP is fully covariant and does not share the arbitrariness and imperfections of our previous covariantization, and its linearization exhibits a vDVZ discontinuity. Nevertheless, we explicitly show that the discontinuity does disappear in the fully covariant theory, and we explain the reason for this phenomenon.
AB - In both old and recent literature, it has been argued that the celebrated van Dam-Veltman-Zakharov (vDVZ) discontinuity of massive gravity is an artifact due to linearization of the true equations of motion. In this Letter, we investigate that claim. First, we exhibit an explicit - albeit somewhat arbitrary - fully covariant set of equations of motion that, upon linearization, reduce to the standard Pauli-Fierz equations. We show that the vDVZ discontinuity still persists in that non-linear, covariant theory. Then, we restrict our attention to a particular system that consistently incorporates massive gravity: the Dvali-Gabadadze-Porrati (DGP) model. DGP is fully covariant and does not share the arbitrariness and imperfections of our previous covariantization, and its linearization exhibits a vDVZ discontinuity. Nevertheless, we explicitly show that the discontinuity does disappear in the fully covariant theory, and we explain the reason for this phenomenon.
UR - http://www.scopus.com/inward/record.url?scp=0037118158&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037118158&partnerID=8YFLogxK
U2 - 10.1016/S0370-2693(02)01656-8
DO - 10.1016/S0370-2693(02)01656-8
M3 - Article
AN - SCOPUS:0037118158
SN - 0370-2693
VL - 534
SP - 209
EP - 215
JO - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
JF - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
IS - 1-4
ER -