Galactic cosmic rays on extrasolar Earth-like planets: I. Cosmic ray flux

J. M. Grießmeier, F. Tabataba-Vakili, A. Stadelmann, J. L. Grenfell, D. Atri

Research output: Contribution to journalArticlepeer-review

Abstract

Context. Theoretical arguments indicate that close-in terrestial exoplanets may have weak magnetic fields, especially in the case of planets more massive than Earth (super-Earths). Planetary magnetic fields, however, constitute one of the shielding layers that protect the planet against cosmic-ray particles. In particular, a weak magnetic field results in a high flux of Galactic cosmic rays that extends to the top of the planetary atmosphere. Aims. We wish to quantify the flux of Galactic cosmic rays to an exoplanetary atmosphere as a function of the particle energy and of the planetary magnetic moment. Methods.We numerically analyzed the propagation of Galactic cosmic-ray particles through planetary magnetospheres.We evaluated the e ciency of magnetospheric shielding as a function of the particle energy (in the range 16 MeV ≤ E ≤ 524 GeV) and as afunction of the planetary magnetic field strength (in the range 0 M⊗ ≤ M ≤ 10 M⊗). Combined with the flux outside the planetary magnetosphere, this gives the cosmic-ray energy spectrum at the top of the planetary atmosphere as a function of the planetary magnetic moment. Results. We find that the particle flux to the planetary atmosphere can be increased by more than three orders of magnitude in the absence of a protecting magnetic field. For a weakly magnetized planet (M = 0:05M⊗), only particles with energies below 512 MeV are at least partially shielded. For a planet with a magnetic moment similar to that of Earth, this limit increases to to 32 GeV, whereas for a strongly magnetized planet (M = 10:0M⊗), partial shielding extends up to 200 GeV. Over the parameter range we studied, strong shielding does not occur for weakly magnetized planets. For a planet with a magnetic moment similar to that of Earth, particles with energies below 512 MeV are strongly shielded, and for strongly magnetized planets, this limit increases to 10 GeV. Conclusions.We find that magnetic shielding strongly controls the number of cosmic-ray particles reaching the planetary atmosphere. The implications of this increased particle flux are discussed in a companion article.

Original languageEnglish (US)
Article numberA44
JournalAstronomy and Astrophysics
Volume581
DOIs
StatePublished - Sep 1 2015

Keywords

  • Cosmic rays
  • Planets and satellites: magnetic fields
  • Planets and satellites: terrestrial planets

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Galactic cosmic rays on extrasolar Earth-like planets: I. Cosmic ray flux'. Together they form a unique fingerprint.

Cite this