Galaxy formation with local photoionization feedback - I. methods

R. Kannan, G. S. Stinson, A. V. Maccío, J. F. Hennawi, R. Woods, J. Wadsley, S. Shen, T. Robitaille, S. Cantalupo, T. R. Quinn, C. Christensen

Research output: Contribution to journalArticlepeer-review

Abstract

We present a first study of the effect of local photoionizing radiation on gas cooling in smoothed particle hydrodynamics simulations of galaxy formation. We explore the combined effect of ionizing radiation from young and old stellar populations. The method computes the effect of multiple radiative sources using the same tree algorithm as used for gravity, so it is computationally efficient and well resolved. The method foregoes calculating absorption and scattering in favour of a constant escape fraction for young stars to keep the calculation efficient enough to simulate the entire evolution of a galaxy in a cosmological context to the present day. This allows us to quantify the effect of the local photoionization feedback through the whole history of a galaxy's formation. The simulation of a MilkyWay-like galaxy using the local photoionization model forms ~40 per cent less stars than a simulation that only includes a standard uniform background UV field. The local photoionization model decreases star formation by increasing the cooling time of the gas in the halo and increasing the equilibrium temperature of dense gas in the disc. Coupling the local radiation field to gas cooling from the halo provides a preventive feedback mechanism which keeps the central disc light and produces slowly rising rotation curves without resorting to extreme feedback mechanisms. These preliminary results indicate that the effect of local photoionizing sources is significant and should not be ignored in models of galaxy formation.

Original languageEnglish (US)
Pages (from-to)2882-2893
Number of pages12
JournalMonthly Notices of the Royal Astronomical Society
Volume437
Issue number3
DOIs
StatePublished - Jan 2014

Keywords

  • Atomic processes - hydrodynamics - plasmas - radiative transfer - methods
  • Formation
  • Numerical - galaxies

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Galaxy formation with local photoionization feedback - I. methods'. Together they form a unique fingerprint.

Cite this