Gated feedback recurrent neural networks

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, Yoshua Bengio

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this work, we propose a novel recurrent neural network (RNN) architecture. The proposed RNN, gated-feedback RNN (GF-RNN), extends the existing approach of stacking multiple recurrent layers by allowing and controlling signals flowing from upper recurrent layers to lower layers using a global gating unit for each pair of layers. The recurrent signals exchanged between layers are gated adaptively based on the previous hidden states and the current input. We evaluated the proposed GF-RNN with different types of recurrent units, such as tanh, long short-term memory and gated recurrent units, on the tasks of character-level language modeling and Python program evaluation. Our empirical evaluation of different RNN units, revealed that in both tasks, the GF-RNN outperforms the conventional approaches to build deep stacked RNNs. We suggest that the improvement arises because the GF-RNN can adaptively assign different layers to different timescales and layer-to-layer interactions (including the top-down ones which are not usually present in a stacked RNN) by learning to gate these interactions.

Original languageEnglish (US)
Title of host publication32nd International Conference on Machine Learning, ICML 2015
EditorsFrancis Bach, David Blei
PublisherInternational Machine Learning Society (IMLS)
Pages2067-2075
Number of pages9
ISBN (Electronic)9781510810587
StatePublished - 2015
Event32nd International Conference on Machine Learning, ICML 2015 - Lile, France
Duration: Jul 6 2015Jul 11 2015

Publication series

Name32nd International Conference on Machine Learning, ICML 2015
Volume3

Other

Other32nd International Conference on Machine Learning, ICML 2015
Country/TerritoryFrance
CityLile
Period7/6/157/11/15

ASJC Scopus subject areas

  • Human-Computer Interaction
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Gated feedback recurrent neural networks'. Together they form a unique fingerprint.

Cite this