Gearbox: A Hierarchical Packet Scheduler for Approximate Weighted Fair Queuing

Peixuan Gao, Anthony Dalleggio, Yang Xu, H. Jonathan Chao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Bandwidth allocation and performance isolation are crucial to achieving network virtualization and guaranteeing service quality in data centers as well as other network systems. Weighted Fair Queuing (WFQ) can achieve customized bandwidth allocation and flow isolation; however, its implementation in large-scale high-speed network systems is very challenging due to the high complexity of the scheduling and the large number of queues required. This paper proposes Gearbox, a scheduler primitive for next-generation programmable switches and smart NICs that practically approximates WFQ. Gearbox consists of a logical hierarchy of queuing levels, which accommodate a wide range of packet departure times using a relatively small number of FIFOs. Gearbox's enqueue and dequeue operations have O(1) time complexity, which makes it suitable to cope with high-speed line rates. Gearbox provides its simplicity and performance advantages by allowing slight discrepancies in packet departure time from strict WFQ. We show that Gearbox's normalized departure time discrepancy is bounded and has a negligible impact on bandwidth allocation and flow completion time (FCT). We implement Gearbox in NS2 and in VHDL, targeted to a Xilinx Alveo U250 card with an XCVU13P FPGA. The NS2 evaluation results show that Gearbox closely approximates WFQ and achieves weighted max-min fairness in bandwidth allocation as well as flow isolation. Gearbox provides FCT performance comparable to ideal WFQ. The Gearbox FPGA prototype runs at 350MHz and achieves full line rate for 100GbE with packets larger than 123 bytes. Gearbox consumes less than 1% of the FPGA's logic resources and less than 4% of its internal block memory.

Original languageEnglish (US)
Title of host publicationProceedings of the 19th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2022
PublisherUSENIX Association
Pages551-565
Number of pages15
ISBN (Electronic)9781939133274
StatePublished - 2022
Event19th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2022 - Renton, United States
Duration: Apr 4 2022Apr 6 2022

Publication series

NameProceedings of the 19th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2022

Conference

Conference19th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2022
Country/TerritoryUnited States
CityRenton
Period4/4/224/6/22

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Gearbox: A Hierarchical Packet Scheduler for Approximate Weighted Fair Queuing'. Together they form a unique fingerprint.

Cite this