TY - GEN
T1 - General bounds for incremental maximization
AU - Bernstein, Aaron
AU - Disser, Yann
AU - Groß, Martin
N1 - Publisher Copyright:
© Aaron Bernstein, Yann Disser, and Martin Groß;.
PY - 2017/7/1
Y1 - 2017/7/1
N2 - We propose a theoretical framework to capture incremental solutions to cardinality constrained maximization problems. The defining characteristic of our framework is that the cardinality/support of the solution is bounded by a value k ∈ N that grows over time, and we allow the solution to be extended one element at a time. We investigate the best-possible competitive ratio of such an incremental solution, i.e., the worst ratio over all k between the incremental solution after k steps and an optimum solution of cardinality k. We define a large class of problems that contains many important cardinality constrained maximization problems like maximum matching, knapsack, and packing/covering problems. We provide a general 2.618-competitive incremental algorithm for this class of problems, and show that no algorithm can have competitive ratio below 2.18 in general. In the second part of the paper, we focus on the inherently incremental greedy algorithm that increases the objective value as much as possible in each step. This algorithm is known to be 1.58-competitive for submodular objective functions, but it has unbounded competitive ratio for the class of incremental problems mentioned above. We define a relaxed submodularity condition for the objective function, capturing problems like maximum (weighted) (b-)matching and a variant of the maximum flow problem. We show that the greedy algorithm has competitive ratio (exactly) 2.313 for the class of problems that satisfy this relaxed submodularity condition. Note that our upper bounds on the competitive ratios translate to approximation ratios for the underlying cardinality constrained problems.
AB - We propose a theoretical framework to capture incremental solutions to cardinality constrained maximization problems. The defining characteristic of our framework is that the cardinality/support of the solution is bounded by a value k ∈ N that grows over time, and we allow the solution to be extended one element at a time. We investigate the best-possible competitive ratio of such an incremental solution, i.e., the worst ratio over all k between the incremental solution after k steps and an optimum solution of cardinality k. We define a large class of problems that contains many important cardinality constrained maximization problems like maximum matching, knapsack, and packing/covering problems. We provide a general 2.618-competitive incremental algorithm for this class of problems, and show that no algorithm can have competitive ratio below 2.18 in general. In the second part of the paper, we focus on the inherently incremental greedy algorithm that increases the objective value as much as possible in each step. This algorithm is known to be 1.58-competitive for submodular objective functions, but it has unbounded competitive ratio for the class of incremental problems mentioned above. We define a relaxed submodularity condition for the objective function, capturing problems like maximum (weighted) (b-)matching and a variant of the maximum flow problem. We show that the greedy algorithm has competitive ratio (exactly) 2.313 for the class of problems that satisfy this relaxed submodularity condition. Note that our upper bounds on the competitive ratios translate to approximation ratios for the underlying cardinality constrained problems.
KW - Cardinality constraint
KW - Competitive analysis
KW - Greedy algorithm
KW - Incremental optimization
KW - Maximization problems
UR - http://www.scopus.com/inward/record.url?scp=85027243968&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027243968&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ICALP.2017.43
DO - 10.4230/LIPIcs.ICALP.2017.43
M3 - Conference contribution
AN - SCOPUS:85027243968
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017
A2 - Muscholl, Anca
A2 - Indyk, Piotr
A2 - Kuhn, Fabian
A2 - Chatzigiannakis, Ioannis
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017
Y2 - 10 July 2017 through 14 July 2017
ER -