Generalized LED index modulation optical OFDM for MIMO visible light communications systems

Ertuǧrul Başar, Erdal Panayirci, Murat Uysal, Harald Haas

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we propose a generalized light emitting diode (LED) index modulation scheme for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) visible light communications (VLC) systems. The proposed scheme generalizes the LED index modulation concept by using the spatial multiplexing principle to transmit complex OFDM signals through VLC channels by separating these signals into their real-imaginary and positive-negative parts. The maximum a posteriori (MAP) estimator of the proposed scheme, which relies on quadratic programing (QP) problem, is presented for flat VLC channels. It is shown via computer simulations that the proposed scheme achieves considerably better error performance than the existing VLC-MIMO-OFDM systems due to its power efficiency and improved transceiver structure.

Original languageEnglish (US)
Title of host publication2016 IEEE International Conference on Communications, ICC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479966646
DOIs
StatePublished - Jul 12 2016
Event2016 IEEE International Conference on Communications, ICC 2016 - Kuala Lumpur, Malaysia
Duration: May 22 2016May 27 2016

Publication series

Name2016 IEEE International Conference on Communications, ICC 2016

Other

Other2016 IEEE International Conference on Communications, ICC 2016
Country/TerritoryMalaysia
CityKuala Lumpur
Period5/22/165/27/16

ASJC Scopus subject areas

  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Generalized LED index modulation optical OFDM for MIMO visible light communications systems'. Together they form a unique fingerprint.

Cite this