Abstract
Verifying political claims is a challenging task, as politicians can use various tactics to subtly misrepresent the facts for their agenda. Existing automatic fact-checking systems fall short here, and their predictions like “half-true” are not very useful in isolation, since it is unclear which parts of a claim are true or false. In this work, we focus on decomposing a complex claim into a comprehensive set of yes-no subquestions whose answers influence the veracity of the claim. We present CLAIMDECOMP, a dataset of decompositions for over 1000 claims. Given a claim and its verification paragraph written by fact-checkers, our trained annotators write subquestions covering both explicit propositions of the original claim and its implicit facets, such as additional political context that changes our view of the claim's veracity. We study whether state-of-the-art pre-trained models can learn to generate such subquestions. Our experiments show that these models generate reasonable questions, but predicting implied subquestions based only on the claim (without consulting other evidence) remains challenging. Nevertheless, we show that predicted subquestions can help identify relevant evidence to fact-check the full claim and derive the veracity through their answers, suggesting that claim decomposition can be a useful piece of a fact-checking pipeline.
Original language | English (US) |
---|---|
Pages | 3495-3516 |
Number of pages | 22 |
State | Published - 2022 |
Event | 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022 - Abu Dhabi, United Arab Emirates Duration: Dec 7 2022 → Dec 11 2022 |
Conference
Conference | 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022 |
---|---|
Country/Territory | United Arab Emirates |
City | Abu Dhabi |
Period | 12/7/22 → 12/11/22 |
ASJC Scopus subject areas
- Computational Theory and Mathematics
- Computer Science Applications
- Information Systems