TY - JOUR
T1 - Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana
AU - Ungerer, Mark C.
AU - Halldorsdottir, Solveig S.
AU - Purugganan, Michael D.
AU - Mackay, Trudy F C
PY - 2003/9/1
Y1 - 2003/9/1
N2 - Phenotypic plasticity and genotype-environment interactions (GEI) play a prominent role in plant morphological diversity and in the potential functional capacities of plant life-history traits. The genetic basis of plasticity and GEI, however, is poorly understood in most organisms. In this report, inflorescence development patterns in Arabidopsis thaliana were examined under different, ecologically relevant photoperiod environments for two recombinant inbred mapping populations (Ler × Col and Cvi × Ler) using a combination of quantitative genetics and quantitative trait locus (QTL) mapping. Plasticity and GEI were regularly observed for the majority of 13 inflorescence traits. These observations can be attributable (at least partly) to variable effects of specific QTL. Pooled across traits, 12/44 (27.3%) and 32/62 (51.6%) of QTL exhibited significant QTL × environment interactions in the Ler × Col and Cvi × Ler lines, respectively. These interactions were attributable to changes in magnitude of effect of QTL more often than to changes in rank order (sign) of effect. Multiple QTL × environment interactions (in Cvi × Ler) clustered in two genomic regions on chromosomes 1 and 5, indicating a disproportionate contribution of these regions to the phenotypic patterns observed. High-resolution mapping will be necessary to distinguish between the alternative explanations of pleiotropy and tight linkage among multiple genes.
AB - Phenotypic plasticity and genotype-environment interactions (GEI) play a prominent role in plant morphological diversity and in the potential functional capacities of plant life-history traits. The genetic basis of plasticity and GEI, however, is poorly understood in most organisms. In this report, inflorescence development patterns in Arabidopsis thaliana were examined under different, ecologically relevant photoperiod environments for two recombinant inbred mapping populations (Ler × Col and Cvi × Ler) using a combination of quantitative genetics and quantitative trait locus (QTL) mapping. Plasticity and GEI were regularly observed for the majority of 13 inflorescence traits. These observations can be attributable (at least partly) to variable effects of specific QTL. Pooled across traits, 12/44 (27.3%) and 32/62 (51.6%) of QTL exhibited significant QTL × environment interactions in the Ler × Col and Cvi × Ler lines, respectively. These interactions were attributable to changes in magnitude of effect of QTL more often than to changes in rank order (sign) of effect. Multiple QTL × environment interactions (in Cvi × Ler) clustered in two genomic regions on chromosomes 1 and 5, indicating a disproportionate contribution of these regions to the phenotypic patterns observed. High-resolution mapping will be necessary to distinguish between the alternative explanations of pleiotropy and tight linkage among multiple genes.
UR - http://www.scopus.com/inward/record.url?scp=0141455094&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0141455094&partnerID=8YFLogxK
M3 - Article
C2 - 14504242
AN - SCOPUS:0141455094
SN - 0016-6731
VL - 165
SP - 353
EP - 365
JO - Genetics
JF - Genetics
IS - 1
ER -