TY - JOUR
T1 - Glass transition and dynamic-mobility spectrum of an isotropic system of rodlike molecules
AU - Teraoka, Iwao
AU - Karasz, Frank E.
PY - 1993
Y1 - 1993
N2 - A self-consistent mean-field theory of the glass transition is presented for the model of a high-density isotropic melt of rodlike molecules, which was originally proposed by Edwards and Evans [J. Chem. Soc. Faraday Trans. 2 78, 113 (1982)]. In this model, translation along the rod axis is the only mode available, but the diffusional motion of a given rod (hereafter called the test rod) is hindered by end-on collisions with the lateral surfaces of other rods that lie in its diffusion path. The basis of this treatment is the mean-field Green-function theory developed in our previous contribution for one-dimensional diffusion in the presence of many reflecting barriers [Phys. Rev. A 45, 5426 (1992)]. A self-consistency requirement for the dynamics of the test rod and of the barrier rods leads to an asymptotic decrease to zero in the long-time diffusion constant, i.e., a glass transition, as the density of the barrier rods exceeds a critical value. The glass transition is manifested in a divergence of the lifetime of the barrier in a power-law (T-T1)-2 relation as the temperature T approaches a glass-transition temperature T1 from above if a linear thermal contraction is assumed in the mobile phase. At a higher temperature, follows Arrhenius behavior. A relaxation is observed in the dynamic-mobility spectrum of rod translation with a change in the profile between the mobile and the glassy phases. We also investigate the complex modulus of the melt and find a spectral distribution similar to that for the shear modulus obtained by reptation theory for entangled linear-chain polymers.
AB - A self-consistent mean-field theory of the glass transition is presented for the model of a high-density isotropic melt of rodlike molecules, which was originally proposed by Edwards and Evans [J. Chem. Soc. Faraday Trans. 2 78, 113 (1982)]. In this model, translation along the rod axis is the only mode available, but the diffusional motion of a given rod (hereafter called the test rod) is hindered by end-on collisions with the lateral surfaces of other rods that lie in its diffusion path. The basis of this treatment is the mean-field Green-function theory developed in our previous contribution for one-dimensional diffusion in the presence of many reflecting barriers [Phys. Rev. A 45, 5426 (1992)]. A self-consistency requirement for the dynamics of the test rod and of the barrier rods leads to an asymptotic decrease to zero in the long-time diffusion constant, i.e., a glass transition, as the density of the barrier rods exceeds a critical value. The glass transition is manifested in a divergence of the lifetime of the barrier in a power-law (T-T1)-2 relation as the temperature T approaches a glass-transition temperature T1 from above if a linear thermal contraction is assumed in the mobile phase. At a higher temperature, follows Arrhenius behavior. A relaxation is observed in the dynamic-mobility spectrum of rod translation with a change in the profile between the mobile and the glassy phases. We also investigate the complex modulus of the melt and find a spectral distribution similar to that for the shear modulus obtained by reptation theory for entangled linear-chain polymers.
UR - http://www.scopus.com/inward/record.url?scp=35949006210&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=35949006210&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.47.1108
DO - 10.1103/PhysRevE.47.1108
M3 - Article
AN - SCOPUS:35949006210
VL - 47
SP - 1108
EP - 1118
JO - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
JF - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
SN - 1063-651X
IS - 2
ER -