Abstract
A global adaptive output feedback dynamic compensator is proposed for stabilization and tracking of a class of systems that are globally diffeomorphic into systems in generalized output-feedback canonical form. This form includes as special cases the standard output-feedback canonical form and various other forms considered previously in the literature. Output-dependent nonlinearities are allowed to enter both additively and multiplicatively. The system is allowed to contain unknown parameters multiplying output-dependent nonlinearities. Under the assumption that a constant matrix can be found to achieve a certain property, it is shown that a reduced-order observer and a backstepping controller can be designed to achieve asymptotic tracking. It is also shown that this assumption can be removed by introducing extra dynamics. This represents the first adaptive output-feedback tracking results for this class of systems.
Original language | English (US) |
---|---|
Pages (from-to) | 4814-4819 |
Number of pages | 6 |
Journal | Proceedings of the American Control Conference |
Volume | 6 |
DOIs | |
State | Published - 2001 |
Event | 2001 American Control Conference - Arlington, VA, United States Duration: Jun 25 2001 → Jun 27 2001 |
ASJC Scopus subject areas
- Electrical and Electronic Engineering