TY - JOUR
T1 - Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017
T2 - A systematic analysis for the Global Burden of Disease Study 2017
AU - GBD 2017 Mortality Collaborators
AU - Dicker, Daniel
AU - Nguyen, Grant
AU - Abate, Degu
AU - Abate, Kalkidan Hassen
AU - Abay, Solomon M.
AU - Abbafati, Cristiana
AU - Abbasi, Nooshin
AU - Abbastabar, Hedayat
AU - Abd-Allah, Foad
AU - Abdela, Jemal
AU - Abdelalim, Ahmed
AU - Abdel-Rahman, Omar
AU - Abdi, Alireza
AU - Abdollahpour, Ibrahim
AU - Abdulkader, Rizwan Suliankatchi
AU - Abdurahman, Ahmed Abdulahi
AU - Abebe, Haftom Temesgen
AU - Abebe, Molla
AU - Abebe, Zegeye
AU - Abebo, Teshome Abuka
AU - Aboyans, Victor
AU - Abraha, Haftom Niguse
AU - Abrham, Aklilu Roba
AU - Abu-Raddad, Laith Jamal
AU - Abu-Rmeileh, Niveen M.E.
AU - Accrombessi, Manfred Mario Kokou
AU - Acharya, Pawan
AU - Adebayo, Oladimeji M.
AU - Adedeji, Isaac Akinkunmi
AU - Adedoyin, Rufus Adesoji
AU - Adekanmbi, Victor
AU - Adetokunboh, Olatunji O.
AU - Adhena, Beyene Meressa
AU - Adhikari, Tara Ballav
AU - Adib, Mina G.
AU - Adou, Arsène Kouablan
AU - Adsuar, Jose C.
AU - Afarideh, Mohsen
AU - Afshin, Ashkan
AU - Agarwal, Gina
AU - Aggarwal, Rakesh
AU - Aghayan, Sargis Aghasi
AU - Agrawal, Sutapa
AU - Agrawal, Anurag
AU - Ahmadi, Mehdi
AU - Ahmadi, Alireza
AU - Ahmadieh, Hamid
AU - Ali, Raghib
AU - Des Jarlais, Don C.
AU - Peprah, Emmanuel K.
N1 - Publisher Copyright:
© 2018 The Author(s).
PY - 2018/11/10
Y1 - 2018/11/10
N2 - Background: Assessments of age-specifc mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Afairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specifc mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in diferent components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings: Globally, 18·7% (95% uncertainty interval 18·4-19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2-59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5-49·6) to 70·5 years (70·1-70·8) for men and from 52·9 years (51·7-54·0) to 75·6 years (75·3-75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5-51·7) for men in the Central African Republic to 87·6 years (86·9-88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3-238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6-42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2-5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation: This analysis of age-sex-specifc mortality shows that there are remarkably complex patterns in population mortality across countries. The fndings of this study highlight global successes, such as the large decline in under-5 mortality, which refects signifcant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing.
AB - Background: Assessments of age-specifc mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Afairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specifc mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in diferent components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings: Globally, 18·7% (95% uncertainty interval 18·4-19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2-59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5-49·6) to 70·5 years (70·1-70·8) for men and from 52·9 years (51·7-54·0) to 75·6 years (75·3-75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5-51·7) for men in the Central African Republic to 87·6 years (86·9-88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3-238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6-42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2-5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation: This analysis of age-sex-specifc mortality shows that there are remarkably complex patterns in population mortality across countries. The fndings of this study highlight global successes, such as the large decline in under-5 mortality, which refects signifcant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing.
UR - http://www.scopus.com/inward/record.url?scp=85056148226&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056148226&partnerID=8YFLogxK
U2 - 10.1016/S0140-6736(18)31891-9
DO - 10.1016/S0140-6736(18)31891-9
M3 - Article
C2 - 30496102
AN - SCOPUS:85056148226
SN - 0140-6736
VL - 392
SP - 1684
EP - 1735
JO - The Lancet
JF - The Lancet
IS - 10159
ER -