TY - JOUR
T1 - Glycosylation Increases Potassium Channel Stability and Surface Expression in Mammalian Cells
AU - Khanna, Rajesh
AU - Myers, Michael P.
AU - Lainé, Muriel
AU - Papazian, Diane M.
PY - 2001/9/7
Y1 - 2001/9/7
N2 - N-linked glycosylation is not required for the cell surface expression of functional Shaker potassium channels in Xenopus oocytes (Santacruz-Toloza, L., Huang, Y., John, S. A., and Papazian, D. M. (1994) Biochemistry 33, 5607-5613). We have now investigated whether glycosylation increases the stability, cell surface expression, and proper folding of Shaker protein expressed in mammalian cells. The turnover rates of wild-type protein and an unglycosylated mutant (N259Q,N263Q) were compared in pulse-chase experiments. The wild-type protein was stable, showing little degradation after 48 h. In contrast, the unglycosylated mutant was rapidly degraded (t1/2 = ∼18 h). Lactacystin slowed the degradation of the mutant protein, implicating cytoplasmic proteasomes in its turnover. Rapid lactacystin-sensitive degradation could be conferred on wild-type Shaker by a glycosylation inhibitor. Expression of the unglycosylated mutant on the cell surface, assessed using immunofluorescence microscopy and biotinylation, was dramatically reduced compared with wild type. Folding and assembly were analyzed by oxidizing intersubunit disulfide bonds, which provides a fortuitous hallmark of the native structure. Surprisingly, formation of disulfidebonded adducts was quantitatively similar in the wild-type and unglycosylated mutant proteins. Our results indicate that glycosylation increases the stability and cell surface expression of Shaker protein but has little effect on acquisition of the native structure.
AB - N-linked glycosylation is not required for the cell surface expression of functional Shaker potassium channels in Xenopus oocytes (Santacruz-Toloza, L., Huang, Y., John, S. A., and Papazian, D. M. (1994) Biochemistry 33, 5607-5613). We have now investigated whether glycosylation increases the stability, cell surface expression, and proper folding of Shaker protein expressed in mammalian cells. The turnover rates of wild-type protein and an unglycosylated mutant (N259Q,N263Q) were compared in pulse-chase experiments. The wild-type protein was stable, showing little degradation after 48 h. In contrast, the unglycosylated mutant was rapidly degraded (t1/2 = ∼18 h). Lactacystin slowed the degradation of the mutant protein, implicating cytoplasmic proteasomes in its turnover. Rapid lactacystin-sensitive degradation could be conferred on wild-type Shaker by a glycosylation inhibitor. Expression of the unglycosylated mutant on the cell surface, assessed using immunofluorescence microscopy and biotinylation, was dramatically reduced compared with wild type. Folding and assembly were analyzed by oxidizing intersubunit disulfide bonds, which provides a fortuitous hallmark of the native structure. Surprisingly, formation of disulfidebonded adducts was quantitatively similar in the wild-type and unglycosylated mutant proteins. Our results indicate that glycosylation increases the stability and cell surface expression of Shaker protein but has little effect on acquisition of the native structure.
UR - http://www.scopus.com/inward/record.url?scp=0035823555&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035823555&partnerID=8YFLogxK
U2 - 10.1074/jbc.M105248200
DO - 10.1074/jbc.M105248200
M3 - Article
C2 - 11427541
AN - SCOPUS:0035823555
SN - 0021-9258
VL - 276
SP - 34028
EP - 34034
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 36
ER -