Graph convolutional networks with argument-aware pooling for event detection

Thien Huu Nguyen, Ralph Grishman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The current neural network models for event detection have only considered the sequential representation of sentences. Syntactic representations have not been explored in this area although they provide an effective mechanism to directly link words to their informative context for event detection in the sentences. In this work, we investigate a convolutional neural network based on dependency trees to perform event detection. We propose a novel pooling method that relies on entity mentions to aggregate the convolution vectors. The extensive experiments demonstrate the benefits of the dependency-based convolutional neural networks and the entity mention-based pooling method for event detection. We achieve the state-of-the-art performance on widely used datasets with both perfect and predicted entity mentions.

Original languageEnglish (US)
Title of host publication32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PublisherAAAI press
Pages5900-5907
Number of pages8
ISBN (Electronic)9781577358008
StatePublished - 2018
Event32nd AAAI Conference on Artificial Intelligence, AAAI 2018 - New Orleans, United States
Duration: Feb 2 2018Feb 7 2018

Publication series

Name32nd AAAI Conference on Artificial Intelligence, AAAI 2018

Other

Other32nd AAAI Conference on Artificial Intelligence, AAAI 2018
CountryUnited States
CityNew Orleans
Period2/2/182/7/18

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Graph convolutional networks with argument-aware pooling for event detection'. Together they form a unique fingerprint.

Cite this