Graph structure of neural networks

Jiaxuan You, Jure Leskovec, Kaiming He, Saining Xie

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Neural networks are often represented as graphs of connections between neurons. However, despite their wide use, there is currently little understanding of the relationship between the graph structure of the neural network and its predictive performance. Here we systematically investigate how does the graph structure of neural networks affect their predictive performance. To this end, we develop a novel graph-based representation of neural networks called relational graph, where layers of neural network computation correspond to rounds of message exchange along the graph structure. Using this representation we show that: (1) a “sweet spot” of relational graphs leads to neural networks with significantly improved predictive performance; (2) neural network’s performance is approximately a smooth function of the clustering coefficient and average path length of its relational graph; (3) our findings are consistent across many different tasks and datasets; (4) the sweet spot can be identified efficiently; (5) top-performing neural networks have graph structure surprisingly similar to those of real biological neural networks. Our work opens new directions for the design of neural architectures and the understanding on neural networks in general.

Original languageEnglish (US)
Title of host publication37th International Conference on Machine Learning, ICML 2020
EditorsHal Daume, Aarti Singh
PublisherInternational Machine Learning Society (IMLS)
Pages10812-10822
Number of pages11
ISBN (Electronic)9781713821120
StatePublished - 2020
Event37th International Conference on Machine Learning, ICML 2020 - Virtual, Online
Duration: Jul 13 2020Jul 18 2020

Publication series

Name37th International Conference on Machine Learning, ICML 2020
VolumePartF168147-14

Conference

Conference37th International Conference on Machine Learning, ICML 2020
CityVirtual, Online
Period7/13/207/18/20

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Fingerprint

Dive into the research topics of 'Graph structure of neural networks'. Together they form a unique fingerprint.

Cite this