TY - JOUR
T1 - Graphit
T2 - A high-performance graph DSL
AU - Zhang, Yunming
AU - Yang, Mengjiao
AU - Baghdadi, Riyadh
AU - Kamil, Shoaib
AU - Shun, Julian
AU - Amarasinghe, Saman
N1 - Publisher Copyright:
© 2018 Copyright held by the owner/author(s).
PY - 2018/11
Y1 - 2018/11
N2 - The performance bottlenecks of graph applications depend not only on the algorithm and the underlying hardware, but also on the size and structure of the input graph. As a result, programmers must try different combinations of a large set of techniques, which make tradeoffs among locality, work-efficiency, and parallelism, to develop the best implementation for a specific algorithm and type of graph. Existing graph frameworks and domain specific languages (DSLs) lack flexibility, supporting only a limited set of optimizations. This paper introduces GraphIt, a new DSL for graph computations that generates fast implementations for algorithms with different performance characteristics running on graphs with different sizes and structures. GraphIt separates what is computed (algorithm) from how it is computed (schedule). Programmers specify the algorithm using an algorithm language, and performance optimizations are specified using a separate scheduling language. The algorithm language simplifies expressing the algorithms, while exposing opportunities for optimizations. We formulate graph optimizations, including edge traversal direction, data layout, parallelization, cache, NUMA, and kernel fusion optimizations, as tradeoffs among locality, parallelism, and work-efficiency. The scheduling language enables programmers to easily search through this complicated tradeoff space by composing together a large set of edge traversal, vertex data layout, and program structure optimizations. The separation of algorithm and schedule also enables us to build an autotuner on top of GraphIt to automatically find high-performance schedules. The compiler uses a new scheduling representation, the graph iteration space, to model, compose, and ensure the validity of the large number of optimizations. We evaluate GraphIt's performance with seven algorithms on graphs with different structures and sizes. GraphIt outperforms the next fastest of six state-of-the-art shared-memory frameworks (Ligra, Green-Marl, GraphMat, Galois, Gemini, and Grazelle) on 24 out of 32 experiments by up to 4.8×, and is never more than 43% slower than the fastest framework on the other experiments. GraphIt also reduces the lines of code by up to an order of magnitude compared to the next fastest framework.
AB - The performance bottlenecks of graph applications depend not only on the algorithm and the underlying hardware, but also on the size and structure of the input graph. As a result, programmers must try different combinations of a large set of techniques, which make tradeoffs among locality, work-efficiency, and parallelism, to develop the best implementation for a specific algorithm and type of graph. Existing graph frameworks and domain specific languages (DSLs) lack flexibility, supporting only a limited set of optimizations. This paper introduces GraphIt, a new DSL for graph computations that generates fast implementations for algorithms with different performance characteristics running on graphs with different sizes and structures. GraphIt separates what is computed (algorithm) from how it is computed (schedule). Programmers specify the algorithm using an algorithm language, and performance optimizations are specified using a separate scheduling language. The algorithm language simplifies expressing the algorithms, while exposing opportunities for optimizations. We formulate graph optimizations, including edge traversal direction, data layout, parallelization, cache, NUMA, and kernel fusion optimizations, as tradeoffs among locality, parallelism, and work-efficiency. The scheduling language enables programmers to easily search through this complicated tradeoff space by composing together a large set of edge traversal, vertex data layout, and program structure optimizations. The separation of algorithm and schedule also enables us to build an autotuner on top of GraphIt to automatically find high-performance schedules. The compiler uses a new scheduling representation, the graph iteration space, to model, compose, and ensure the validity of the large number of optimizations. We evaluate GraphIt's performance with seven algorithms on graphs with different structures and sizes. GraphIt outperforms the next fastest of six state-of-the-art shared-memory frameworks (Ligra, Green-Marl, GraphMat, Galois, Gemini, and Grazelle) on 24 out of 32 experiments by up to 4.8×, and is never more than 43% slower than the fastest framework on the other experiments. GraphIt also reduces the lines of code by up to an order of magnitude compared to the next fastest framework.
KW - Big Data
KW - Code Generation
KW - Compiler Optimizations
UR - http://www.scopus.com/inward/record.url?scp=85108970352&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108970352&partnerID=8YFLogxK
U2 - 10.1145/3276491
DO - 10.1145/3276491
M3 - Article
AN - SCOPUS:85108970352
SN - 2475-1421
VL - 2
JO - Proceedings of the ACM on Programming Languages
JF - Proceedings of the ACM on Programming Languages
IS - OOPSLA
M1 - 121
ER -