Grounding Compositional Hypothesis Generation in Specific Instances

Neil R. Bramley, Anselm Rothe, Joshua B. Tenenbaum, Fei Xu, Todd M. Gureckis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A number of recent computational models treat concept learning as a form of probabilistic rule induction in a space of language-like, compositional concepts. Inference in such models frequently requires repeatedly sampling from a (infinite) distribution over possible concept rules and comparing their relative likelihood in light of current data or evidence. However, we argue that most existing algorithms for top-down sampling are inefficient and cognitively implausible accounts of human hypothesis generation. As a result, we propose an alternative, Instance Driven Generator (IDG), that constructs bottom-up hypotheses directly out of encountered positive instances of a concept. Using a novel rule induction task based on the children's game Zendo, we compare these “bottom-up” and “top-down” approaches to inference. We find that the bottom-up IDG model accounts better for human inferences and results in a computationally more tractable inference mechanism for concept learning models based on a probabilistic language of thought.

Original languageEnglish (US)
Title of host publicationProceedings of the 40th Annual Meeting of the Cognitive Science Society, CogSci 2018
PublisherThe Cognitive Science Society
Pages1390-1395
Number of pages6
ISBN (Electronic)9780991196784
StatePublished - 2018
Event40th Annual Meeting of the Cognitive Science Society: Changing Minds, CogSci 2018 - Madison, United States
Duration: Jul 25 2018Jul 28 2018

Publication series

NameProceedings of the 40th Annual Meeting of the Cognitive Science Society, CogSci 2018

Conference

Conference40th Annual Meeting of the Cognitive Science Society: Changing Minds, CogSci 2018
Country/TerritoryUnited States
CityMadison
Period7/25/187/28/18

Keywords

  • discovery
  • hypothesis generation
  • probabilistic language of thought, active learning
  • program induction

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Human-Computer Interaction
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Grounding Compositional Hypothesis Generation in Specific Instances'. Together they form a unique fingerprint.

Cite this