Group mean differences of voxel and surface objects via nonlinear averaging

Shun Xu, Martin Styner, Brad Davis, Sarang Joshi, Guido Gerig

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Building of atlases representing average and variability of a population of images or of segmented objects is a key topic in application areas like brain mapping, deformable object segmentation and object classification. Recent developments in image averaging, i.e. constructing an image which is central within the population, focus on unbiased atlas building with nonlinear deformations. Groupwise nonlinear image averaging creates images which appear sharper than linear results. However, volumetric atlases do not explicitely carry a notion of statistics of embedded shapes. This paper compares population-based linear and non-linear image averaging on 3D objects segmented from each image and compares voxelbased versus surface-based representations. Preliminary results suggest improved locality of group average differences for the nonlinear scheme, which might lead to increased significance for hypothesis testing. Results from a clinical MRI study with sets of subcortical structures of children scanned at two years with follow-up at four years are shown.

Original languageEnglish (US)
Title of host publication2006 3rd IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro - Proceedings
Pages758-761
Number of pages4
StatePublished - 2006
Event2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Arlington, VA, United States
Duration: Apr 6 2006Apr 9 2006

Publication series

Name2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Proceedings
Volume2006

Other

Other2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro
Country/TerritoryUnited States
CityArlington, VA
Period4/6/064/9/06

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Group mean differences of voxel and surface objects via nonlinear averaging'. Together they form a unique fingerprint.

Cite this