Abstract
Spring wheat (Triticum aestivum L., cv. Yecora Rojo) was grown in the intensive agricultural biome (IAB) of Biosphere 2 during the 1995-1996 winter/spring season. Environmental conditions were characterized by a day/night temperature regime of 27/17°C, relative humidity (RH) levels around 45%, mean atmospheric CO2 concentration of 450 ppmv, and natural light conditions with mean intensities about half of outside levels. Weekly samples of above-ground plant matter were collected throughout the growing season and phenological events recorded. A computer model, CERES-Wheat, previously tested under both field and controlled conditions, was used to simulate the observed crop growth and to help in data analysis. We found that CERES-Wheat simulated the data collected at Biosphere 2 to within 10% of observed, thus suggesting that wheat growth inside the IAB was comparable to that documented in other environments. The model predicts phenological stages and final dry matter (DM) production within 10% of the observed data. Measured DM production rates, normalized for light absorbed by the crop, suggested photosynthetic efficiencies intermediate between those observed under optimal field conditions and those recorded in NASA-Controlled Ecological Life-Support Systems (CELSS). We suggest that such a difference can be explained primarily in terms of low light levels inside the IAB, with additional effects due to elevated CO2 concentrations and diffuse light fractions.
Original language | English (US) |
---|---|
Pages (from-to) | 273-286 |
Number of pages | 14 |
Journal | Ecological Engineering |
Volume | 13 |
Issue number | 1-4 |
DOIs | |
State | Published - Jun 1999 |
Keywords
- Biosphere 2
- Controlled environments
- Crop models
- Elevated CO
- Wheat
ASJC Scopus subject areas
- Environmental Engineering
- Nature and Landscape Conservation
- Management, Monitoring, Policy and Law