TY - JOUR
T1 - GWAS for discovery and replication of genetic loci associated with sudden cardiac arrest in patients with coronary artery disease
AU - Aouizerat, Bradley E.
AU - Vittinghoff, Eric
AU - Musone, Stacy L.
AU - Pawlikowska, Ludmila
AU - Kwok, Pui Yan
AU - Olgin, Jeffrey E.
AU - Tseng, Zian H.
N1 - Funding Information:
This research was funded by grants from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) and NIH Roadmap for Medical Research (KL2 RR024130) to BEA and ZHT, and the National Heart, Lung, and Blood Institute/National Institutes of Health (NHLBI/NIH R01 HL102090-01) to ZHT.
PY - 2011/6/10
Y1 - 2011/6/10
N2 - Background: Epidemiologic evidence suggests a heritable component to risk for sudden cardiac arrest independent of risk for myocardial infarction. Recent candidate gene association studies for community sudden cardiac arrests have focused on a limited number of biological pathways and yielded conflicting results. We sought to identify novel gene associations for sudden cardiac arrest in patients with coronary artery disease by performing a genome-wide association study.Methods: Tagging SNPs (n = 338,328) spanning the genome were typed in a case-control study comparing 89 patients with coronary artery disease and sudden cardiac arrest due to ventricular tachycardia or ventricular fibrillation to 520 healthy controls.Results: Fourteen SNPs including 7 SNPs among 7 genes (ACYP2, AP1G2, ESR1, DGES2, GRIA1, KCTD1, ZNF385B) were associated with sudden cardiac arrest (all p < 1.30 × 10-7), following Bonferroni correction and adjustment for population substructure, age, and sex; genetic variation in ESR1 (p = 2.62 × 10-8; Odds Ratio [OR] = 1.43, 95% confidence interval [CI]:1.277, 1.596) has previously been established as a risk factor for cardiovascular disease. In tandem, the role of 9 genes for monogenic long QT syndrome (LQT1-9) was assessed, yielding evidence of association with CACNA1C (LQT8; p = 3.09 × 10-4; OR = 1.18, 95% CI:1.079, 1.290). We also assessed 4 recently published gene associations for sudden cardiac arrest, validating NOS1AP (p = 4.50 × 10-2, OR = 1.15, 95% CI:1.003, 1.326), CSMD2 (p = 6.6 × 10-3, OR = 2.27, 95% CI:1.681, 2.859), and AGTR1 (p = 3.00 × 10-3, OR = 1.13, 95% CI:1.042, 1.215).Conclusion: We demonstrate 11 gene associations for sudden cardiac arrest due to ventricular tachycardia/ventricular fibrillation in patients with coronary artery disease. Validation studies in independent cohorts and functional studies are required to confirm these associations.
AB - Background: Epidemiologic evidence suggests a heritable component to risk for sudden cardiac arrest independent of risk for myocardial infarction. Recent candidate gene association studies for community sudden cardiac arrests have focused on a limited number of biological pathways and yielded conflicting results. We sought to identify novel gene associations for sudden cardiac arrest in patients with coronary artery disease by performing a genome-wide association study.Methods: Tagging SNPs (n = 338,328) spanning the genome were typed in a case-control study comparing 89 patients with coronary artery disease and sudden cardiac arrest due to ventricular tachycardia or ventricular fibrillation to 520 healthy controls.Results: Fourteen SNPs including 7 SNPs among 7 genes (ACYP2, AP1G2, ESR1, DGES2, GRIA1, KCTD1, ZNF385B) were associated with sudden cardiac arrest (all p < 1.30 × 10-7), following Bonferroni correction and adjustment for population substructure, age, and sex; genetic variation in ESR1 (p = 2.62 × 10-8; Odds Ratio [OR] = 1.43, 95% confidence interval [CI]:1.277, 1.596) has previously been established as a risk factor for cardiovascular disease. In tandem, the role of 9 genes for monogenic long QT syndrome (LQT1-9) was assessed, yielding evidence of association with CACNA1C (LQT8; p = 3.09 × 10-4; OR = 1.18, 95% CI:1.079, 1.290). We also assessed 4 recently published gene associations for sudden cardiac arrest, validating NOS1AP (p = 4.50 × 10-2, OR = 1.15, 95% CI:1.003, 1.326), CSMD2 (p = 6.6 × 10-3, OR = 2.27, 95% CI:1.681, 2.859), and AGTR1 (p = 3.00 × 10-3, OR = 1.13, 95% CI:1.042, 1.215).Conclusion: We demonstrate 11 gene associations for sudden cardiac arrest due to ventricular tachycardia/ventricular fibrillation in patients with coronary artery disease. Validation studies in independent cohorts and functional studies are required to confirm these associations.
UR - http://www.scopus.com/inward/record.url?scp=79960631229&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79960631229&partnerID=8YFLogxK
U2 - 10.1186/1471-2261-11-29
DO - 10.1186/1471-2261-11-29
M3 - Article
C2 - 21658281
AN - SCOPUS:79960631229
SN - 1471-2261
VL - 11
JO - BMC Cardiovascular Disorders
JF - BMC Cardiovascular Disorders
M1 - 29
ER -