Hand placement during quadruped locomotion in a humanoid robot: A dynamical system approach

Sarah Degallier, Ludovic Righetti, Auke Ijspeert

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Locomotion on an irregular surface is a challenging task in robotics. Among different problems to solve to obtain robust locomotion, visually guided locomotion and accurate foot placement are of crucial importance. Robust controllers able to adapt to sensory-motor feedbacks, in particular to properly place feet on specific locations, are thus needed. Dynamical systems are well suited for this task as any online modification of the parameters leads to a smooth adaptation of the trajectories, allowing a safe integration of sensory-motor feedback. In this contribution, as a first step in the direction of locomotion on irregular surfaces, we present a controller that allows hand placement during crawling in a simulated humanoid robot. The goal of the controller is to superimpose rhythmic movements for crawling with discrete (i.e. short-term) modulations of the hand placements to reach specific marks on the ground.

Original languageEnglish (US)
Title of host publicationProceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007
Pages2047-2052
Number of pages6
DOIs
StatePublished - 2007
Event2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007 - San Diego, CA, United States
Duration: Oct 29 2007Nov 2 2007

Publication series

NameIEEE International Conference on Intelligent Robots and Systems

Other

Other2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007
Country/TerritoryUnited States
CitySan Diego, CA
Period10/29/0711/2/07

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Hand placement during quadruped locomotion in a humanoid robot: A dynamical system approach'. Together they form a unique fingerprint.

Cite this