Haptic Eye: A Contactless Material Classification System

Tamas Aujeszky, Georgios Korres, Mohamad Eid

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper we demonstrate a system capable of classifying different types of materials in a contactless fashion by using active infrared thermography and machine learning algorithms. A laser diode heats the materials and the infrared camera records the thermal dissipation signature of each material. These data are then fed to machine learning algorithms to classify the materials. This system can potentially be used in teleoperation applications for robots that operate in unknown scenes.

Original languageEnglish (US)
Title of host publicationHaptic Interaction - Perception, Devices and Algorithms, 2018
EditorsMasashi Konyo, Ki-Uk Kyung, Sang-Youn Kim, Hiroyuki Kajimoto, Dongjun Lee
PublisherSpringer Verlag
Pages110-111
Number of pages2
ISBN (Print)9789811331930
DOIs
StatePublished - 2019
Event3rd International AsiaHaptics Conference, 2018 - Incheon, Korea, Republic of
Duration: Nov 14 2018Nov 16 2018

Publication series

NameLecture Notes in Electrical Engineering
Volume535
ISSN (Print)1876-1100
ISSN (Electronic)1876-1119

Conference

Conference3rd International AsiaHaptics Conference, 2018
CountryKorea, Republic of
CityIncheon
Period11/14/1811/16/18

ASJC Scopus subject areas

  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Haptic Eye: A Contactless Material Classification System'. Together they form a unique fingerprint.

  • Cite this

    Aujeszky, T., Korres, G., & Eid, M. (2019). Haptic Eye: A Contactless Material Classification System. In M. Konyo, K-U. Kyung, S-Y. Kim, H. Kajimoto, & D. Lee (Eds.), Haptic Interaction - Perception, Devices and Algorithms, 2018 (pp. 110-111). (Lecture Notes in Electrical Engineering; Vol. 535). Springer Verlag. https://doi.org/10.1007/978-981-13-3194-7_25