Abstract
We show that for any ε > 0, and positive integers k and q such that q ≥= 2k + 1, given a graph on N vertices that has a q-colorable induced sub graph of (1 - ε)N vertices, it is NP-hard to find an independent set of N/qk+1 vertices. This substantially improves upon the work of Dinur et al. [DKPS] who gave a corresponding bound of N/q2. Our result implies that for any positive integer k, given a graph that has an independent set of ≈ (2k + 1)-1 fraction of vertices, it is NP-hard to find an independent set of (2k + 1)-(k+1) fraction of vertices. This improves on the previous work of Engebretsen and Holmerin [EH] who proved a gap of ≈ 2-k vs 2-(k 2), which is best possible using techniques (including those of [EH]) based on the query efficient PCP of Samorodnitsky and Trevisan [3].
Original language | English (US) |
---|---|
Title of host publication | Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS |
Pages | 380-389 |
Number of pages | 10 |
DOIs | |
State | Published - 2012 |
Event | 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012 - New Brunswick, NJ, United States Duration: Oct 20 2012 → Oct 23 2012 |
Other
Other | 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012 |
---|---|
Country/Territory | United States |
City | New Brunswick, NJ |
Period | 10/20/12 → 10/23/12 |
Keywords
- Coloring
- Graphs
- Hardness
- Independent-Set
- PCP
ASJC Scopus subject areas
- General Computer Science