TY - JOUR
T1 - Harvesting of aerial humidity with natural hygroscopic salt excretions
AU - Al-Handawi, Marieh B.
AU - Commins, Patrick
AU - Dinnebier, Robert E.
AU - Abdellatief, Mahmoud
AU - Li, Liang
AU - Naumov, Panče
N1 - Publisher Copyright:
Copyright © 2023 the Author(s).
PY - 2023
Y1 - 2023
N2 - Plants and animals that thrive in arid regions utilize the diurnal changes in environmental temperature and humidity to optimize their water budget by combining water-harvesting mechanisms and morphophysiological traits. The Athel tamarisk (Tamarix aphylla) is a halophytic desert shrub that survives in arid, hypersaline conditions by excreting concentrated solutions of ions as droplets on its surface that crystallize into salt crystals and fall off the branches. Here, we describe the crystallization on the surface of the plant and explore the effects of external conditions such as diurnal changes in humidity and temperature. The salt mixtures contain at least ten common minerals, with NaCl and CaSO4·2H2O being the major products, SiO2 and CaCO3 main sand contaminants, and Li2SO4, CaSO4, KCl, K2Ca(SO4)2·H2O, CaMg(CO3)2 and AlNaSi3O8 present in smaller amounts. In natural conditions, the hanging or sitting droplets remain firmly attached to the surface, with an average adhesion force of 275 ± 3.5 µN measured for pure water. Rather than using morphological features of the surface, the droplets adhere by chemical interactions, predominantly by hydrogen bonding. Increasing ion concentration slightly increases the contact angle on the hydrophobic cuticle, thereby lowering surface wettability. Small amounts of lithium sulfate and possibly other hygroscopic salts result in strong hygroscopicity and propensity for deliquescence of the salt mixture overnight. Within a broader context, this natural mechanism for humidity harvesting that uses environmentally benign salts as moisture adsorbents could provide a bioinspired approach that complements the currently available water collection or cloud-seeding technologies.
AB - Plants and animals that thrive in arid regions utilize the diurnal changes in environmental temperature and humidity to optimize their water budget by combining water-harvesting mechanisms and morphophysiological traits. The Athel tamarisk (Tamarix aphylla) is a halophytic desert shrub that survives in arid, hypersaline conditions by excreting concentrated solutions of ions as droplets on its surface that crystallize into salt crystals and fall off the branches. Here, we describe the crystallization on the surface of the plant and explore the effects of external conditions such as diurnal changes in humidity and temperature. The salt mixtures contain at least ten common minerals, with NaCl and CaSO4·2H2O being the major products, SiO2 and CaCO3 main sand contaminants, and Li2SO4, CaSO4, KCl, K2Ca(SO4)2·H2O, CaMg(CO3)2 and AlNaSi3O8 present in smaller amounts. In natural conditions, the hanging or sitting droplets remain firmly attached to the surface, with an average adhesion force of 275 ± 3.5 µN measured for pure water. Rather than using morphological features of the surface, the droplets adhere by chemical interactions, predominantly by hydrogen bonding. Increasing ion concentration slightly increases the contact angle on the hydrophobic cuticle, thereby lowering surface wettability. Small amounts of lithium sulfate and possibly other hygroscopic salts result in strong hygroscopicity and propensity for deliquescence of the salt mixture overnight. Within a broader context, this natural mechanism for humidity harvesting that uses environmentally benign salts as moisture adsorbents could provide a bioinspired approach that complements the currently available water collection or cloud-seeding technologies.
KW - biomineralization
KW - crystallization
KW - deliquescence
KW - extremopohiles
KW - water collection
UR - http://www.scopus.com/inward/record.url?scp=85175661803&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85175661803&partnerID=8YFLogxK
U2 - 10.1073/pnas.2313134120
DO - 10.1073/pnas.2313134120
M3 - Article
C2 - 37903263
AN - SCOPUS:85175661803
SN - 0027-8424
VL - 120
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 45
M1 - e2313134120
ER -