TY - JOUR

T1 - (HCl)2 and (HF)2 in small helium clusters

T2 - Quantum solvation of hydrogen-bonded dimers

AU - Jiang, Hao

AU - Sarsa, Antonio

AU - Murdachaew, Garold

AU - Szalewicz, Krzysztof

AU - Bačić, Zlatko

N1 - Funding Information:
Two of the authors (Z.B. and H.J.) have been supported in part by the National Science Foundation Grant No. CHE-0315508. Another two of the authors (K.S. and G.M.) acknowledge support from the NSF through Grant No. CHE-0239611. One author (A.S.) acknowledges support from the Spanish Dirección de Investigación Cientifica y Technica, Grant No. ESPB2002–00200, and partial support from the Junta de Andalucia.

PY - 2005

Y1 - 2005

N2 - We present a rigorous theoretical study of the solvation of (HCl)2 and (HF)2 by small (He4) n clusters, with n=1-14 and 30. Pairwise-additive potential-energy surfaces of Hen (HX)2 (X=Cl and F) clusters are constructed from highly accurate four-dimensional (rigid monomer) HX-HX and two-dimensional (rigid monomer) He-HX potentials and a one-dimensional He-He potential. The minimum-energy geometries of these clusters, for n=1-6 in the case of (HCl)2 and n=1-5 for (HF)2, correspond to the He atoms in a ring perpendicular to and bisecting the HX-HX axis. The quantum-mechanical ground-state energies and vibrationally averaged structures of Hen (HCl)2 (n=1-14 and 30) and Hen (HF)2 (n=1-10) clusters are calculated exactly using the diffusion Monte Carlo (DMC) method. In addition, the interchange-tunneling splittings of Hen (HCl)2 clusters with n=1-14 are determined using the fixed-node DMC approach, which was employed by us previously to calculate the tunneling splittings for Hen (HF)2 clusters, n=1-10 [A. Sarsa, Phys. Rev. Lett. 88, 123401 (2002)]. The vibrationally averaged structures of Hen (HX)2 clusters with n=1-6 for (HCl)2 and n=1-5 for (HF)2 have the helium density localized in an effectively one-dimensional ring, or doughnut, perpendicular to and at the midpoint of the HX-HX axis. The rigidity of the solvent ring varies with n and reaches its maximum for the cluster size at which the ring is filled, n=6 and n=5 for (HCl)2 and (HF)2, respectively. Once the equatorial ring is full, the helium density spreads along the HX-HX axis, eventually solvating the entire HX dimer. The interchange-tunneling splitting of Hen (HCl)2 clusters hardly varies at all over the cluster size range considered, n=1-14, and is virtually identical to that of the free HCl dimer. This absence of the solvent effect is in sharp contrast with our earlier results for Hen (HF)2 clusters, which show a ∼30% reduction of the tunneling splitting for n=4. A tentative explanation for this difference is proposed. The implications of our results for the interchange-tunneling dynamics of (HCl)2 in helium nanodroplets are discussed.

AB - We present a rigorous theoretical study of the solvation of (HCl)2 and (HF)2 by small (He4) n clusters, with n=1-14 and 30. Pairwise-additive potential-energy surfaces of Hen (HX)2 (X=Cl and F) clusters are constructed from highly accurate four-dimensional (rigid monomer) HX-HX and two-dimensional (rigid monomer) He-HX potentials and a one-dimensional He-He potential. The minimum-energy geometries of these clusters, for n=1-6 in the case of (HCl)2 and n=1-5 for (HF)2, correspond to the He atoms in a ring perpendicular to and bisecting the HX-HX axis. The quantum-mechanical ground-state energies and vibrationally averaged structures of Hen (HCl)2 (n=1-14 and 30) and Hen (HF)2 (n=1-10) clusters are calculated exactly using the diffusion Monte Carlo (DMC) method. In addition, the interchange-tunneling splittings of Hen (HCl)2 clusters with n=1-14 are determined using the fixed-node DMC approach, which was employed by us previously to calculate the tunneling splittings for Hen (HF)2 clusters, n=1-10 [A. Sarsa, Phys. Rev. Lett. 88, 123401 (2002)]. The vibrationally averaged structures of Hen (HX)2 clusters with n=1-6 for (HCl)2 and n=1-5 for (HF)2 have the helium density localized in an effectively one-dimensional ring, or doughnut, perpendicular to and at the midpoint of the HX-HX axis. The rigidity of the solvent ring varies with n and reaches its maximum for the cluster size at which the ring is filled, n=6 and n=5 for (HCl)2 and (HF)2, respectively. Once the equatorial ring is full, the helium density spreads along the HX-HX axis, eventually solvating the entire HX dimer. The interchange-tunneling splitting of Hen (HCl)2 clusters hardly varies at all over the cluster size range considered, n=1-14, and is virtually identical to that of the free HCl dimer. This absence of the solvent effect is in sharp contrast with our earlier results for Hen (HF)2 clusters, which show a ∼30% reduction of the tunneling splitting for n=4. A tentative explanation for this difference is proposed. The implications of our results for the interchange-tunneling dynamics of (HCl)2 in helium nanodroplets are discussed.

UR - http://www.scopus.com/inward/record.url?scp=29144519314&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=29144519314&partnerID=8YFLogxK

U2 - 10.1063/1.2136358

DO - 10.1063/1.2136358

M3 - Article

C2 - 16375482

AN - SCOPUS:29144519314

SN - 0021-9606

VL - 123

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

IS - 22

M1 - 224313

ER -