@article{afe07fff13e44d32bd7338d2a02706e0,
title = "Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries",
abstract = "One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage.",
author = "Ryu, {Won Hee} and Gittleson, {Forrest S.} and Thomsen, {Julianne M.} and Jinyang Li and Schwab, {Mark J.} and Brudvig, {Gary W.} and Taylor, {Andr{\'e} D.}",
note = "Funding Information: We are grateful for the support from NSF under Grant MRSEC DMR 1119826 (CRISP) and A.D.T acknowledges NSF-CBET-0954985 PECASE Award for providing partial support of this work. Electrochemical and ultraviolet-vis spectroscopic studies were supported by a grant from the Department of Energy, Office of Basic Energy Sciences, Divisions of Chemical Sciences (DE-FG02-07ER15909 to G.W.B.). The Yale Institute for Nanoscience and Quantum Engineering (YINQE) and NSF MRSEC DMR 1119826 (CRISP) provided facility support. This research used resources of the Centre for Functional Nanomaterials, which is a U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2016R1C1B2011442). This Research was supported by the Sookmyung Women's University Research Grants 1-1603-2014. Chasm Technologies are acknowledged for their kind supply of multi-walled carbon nanotubes. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Publisher Copyright: {\textcopyright} The Author(s) 2016.",
year = "2016",
month = oct,
day = "19",
doi = "10.1038/ncomms12925",
language = "English (US)",
volume = "7",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
}