Hiding in multilayer networks

Marcin Waniek, Tomasz P. Michalak, Talal Rahwan

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Multilayer networks allow for modeling complex relationships, where individuals are embedded in multiple social networks at the same time. Given the ubiquity of such relationships, these networks have been increasingly gaining attention in the literature. This paper presents the first analysis of the robustness of centrality measures against strategic manipulation in multilayer networks. More specifically, we consider an “evader” who strategically chooses which connections to form in a multilayer network in order to obtain a low centrality-based ranking—thereby reducing the chance of being highlighted as a key figure in the network—while ensuring that she remains connected to a certain group of people. We prove that determining an optimal way to “hide” is NP-complete and hard to approximate for most centrality measures considered in our study. Moreover, we empirically evaluate a number of heuristics that the evader can use. Our results suggest that the centrality measures that are functions of the entire network topology are more robust to such a strategic evader than their counterparts which consider each layer separately.

Original languageEnglish (US)
Title of host publicationAAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PublisherAAAI press
Number of pages8
ISBN (Electronic)9781577358350
StatePublished - 2020
Event34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States
Duration: Feb 7 2020Feb 12 2020

Publication series

NameAAAI 2020 - 34th AAAI Conference on Artificial Intelligence


Conference34th AAAI Conference on Artificial Intelligence, AAAI 2020
Country/TerritoryUnited States
CityNew York

ASJC Scopus subject areas

  • Artificial Intelligence


Dive into the research topics of 'Hiding in multilayer networks'. Together they form a unique fingerprint.

Cite this