High-dimensional continuification control of large-scale multi-agent systems under limited sensing and perturbations

Gian Carlo Maffettone, Mario Di Bernardo, Maurizio Porfiri

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper investigates the robustness of a novel high-dimensional continuification control method for complex multi-agent systems. We begin by formulating a partial differential equation describing the spatio-temporal density dynamics of swarming agents. A stable control action for the density is then derived and validated under nominal conditions. Subsequently, we discretize this macroscopic strategy into actionable velocity inputs for the system's agents. Our analysis demonstrates the robustness of the approach beyond idealized assumptions of unlimited sensing and absence of perturbations.

Original languageEnglish (US)
Title of host publication2024 IEEE 63rd Conference on Decision and Control, CDC 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6566-6571
Number of pages6
ISBN (Electronic)9798350316339
DOIs
StatePublished - 2024
Event63rd IEEE Conference on Decision and Control, CDC 2024 - Milan, Italy
Duration: Dec 16 2024Dec 19 2024

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference63rd IEEE Conference on Decision and Control, CDC 2024
Country/TerritoryItaly
CityMilan
Period12/16/2412/19/24

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'High-dimensional continuification control of large-scale multi-agent systems under limited sensing and perturbations'. Together they form a unique fingerprint.

Cite this