High-Dimensional Controller Tuning through Latent Representations

Alireza Sarmadi, Prashanth Krishnamurthy, Farshad Khorrami

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we propose a method to automatically and efficiently tune high-dimensional vectors of controller parameters. The proposed method first learns a mapping from the high-dimensional controller parameter space to a lower dimensional space using a machine learning-based algorithm. This mapping is then utilized in an actor-critic framework using Bayesian optimization (BO). The proposed approach is applicable to complex systems (such as quadruped robots). In addition, the proposed approach also enables efficient generalization to different control tasks while also reducing the number of evaluations required while tuning the controller parameters. We evaluate our method on a legged locomotion application. We show the efficacy of the algorithm in tuning the high-dimensional controller parameters and also reducing the number of evaluations required for the tuning. Moreover, it is shown that the method is successful in generalizing to new tasks and is also transferable to other robot dynamics.

Original languageEnglish (US)
Title of host publication2024 IEEE International Conference on Robotics and Automation, ICRA 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages10853-10859
Number of pages7
ISBN (Electronic)9798350384574
DOIs
StatePublished - 2024
Event2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, Japan
Duration: May 13 2024May 17 2024

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Country/TerritoryJapan
CityYokohama
Period5/13/245/17/24

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'High-Dimensional Controller Tuning through Latent Representations'. Together they form a unique fingerprint.

Cite this