Abstract
In plants, root nitrate uptake systems are under systemic feedback repression by the N satiety of the whole organism, thus adjusting the N acquisition capacity to the N demand for growth; however, the underlying molecular mechanisms are largely unknown. We previously isolated the Arabidopsis high nitrogen-insensitive 9-1 (hni9-1) mutant, impaired in the systemic feedback repression of the root nitrate transporter NRT2.1 by high N supply. Here, we show that HNI9 encodes Arabidopsis INTERACT WITH SPT6 (AtIWS1), an evolutionary conserved component of the RNA polymerase II complex. HNI9/AtIWS1 acts in roots to repress NRT2.1 transcription in response to high N supply. At a genomic level, HNI9/AtIWS1 is shown to play a broader role in N signaling by regulating several hundred N-responsive genes in roots. Repression of NRT2.1 transcription by high N supply is associated with an HNI9/AtIWS1-dependent increase in histone H3 lysine 27 trimethylation at the NRT2.1 locus. Our findings highlight the hypothesis that posttranslational chromatin modifications control nutrient acquisition in plants.
Original language | English (US) |
---|---|
Pages (from-to) | 13329-13334 |
Number of pages | 6 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 108 |
Issue number | 32 |
DOIs | |
State | Published - Aug 9 2011 |
Keywords
- Arabidopsis genetics
- Nitrogen signaling
- Nutrient uptake
- Plant chromatin
ASJC Scopus subject areas
- General