High resolution annotation of zebrafish transcriptome using long-read sequencing

German Nudelman, Antonio Frasca, Brandon Kent, Kirsten C. Sadler, Stuart C. Sealfon, Martin J. Walsh, Elena Zaslavsky

Research output: Contribution to journalArticlepeer-review


With the emergence of zebrafish as an important model organism, a concerted effort has been made to study its transcriptome. This effort is limited, however, by gaps in zebrafish annotation, which are especially pronounced concerning transcripts dynamically expressed during zygotic genome activation (ZGA). To date, short-read sequencing has been the principal technology for zebrafish transcriptome annotation. In part because these sequence reads are too short for assembly methods to resolve the full complexity of the transcriptome, the current annotation is rudimentary. By providing direct observation of full-length transcripts, recently refined long-read sequencing platforms can dramatically improve annotation coverage and accuracy. Here, we leveraged the SMRT platform to study the transcriptome of zebrafish embryos before and after ZGA. Our analysis revealed additional novelty and complexity in the zebrafish transcriptome, identifying 2539 high-confidence novel transcripts that originated from previously unannotated loci and 1835 high-confidence new isoforms in previously annotated genes. We validated these findings using a suite of computational approaches including structural prediction, sequence homology, and functional conservation analyses, as well as by confirmatory transcript quantification with short-read sequencing data. Our analyses provided insight into new homologs and paralogs of functionally important proteins and noncoding RNAs, isoform switching occurrences, and different classes of novel splicing events. Several novel isoforms representing distinct splicing events were validated through PCR experiments, including the discovery and validation of a novel 8-kb transcript spanning multiple mir-430 elements, an important driver of early development. Our study provides a significantly improved zebrafish transcriptome annotation resource.

Original languageEnglish (US)
Pages (from-to)1415-1425
Number of pages11
JournalGenome Research
Issue number9
StatePublished - Sep 2018

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)


Dive into the research topics of 'High resolution annotation of zebrafish transcriptome using long-read sequencing'. Together they form a unique fingerprint.

Cite this