Abstract
Background: Worldwide demand for SARS-CoV-2 RT-PCR testing is still high as testing remains central to follow the disease spread and vaccine efficacy. Group testing has been proposed as a solution to expand testing capabilities but sensitivity concerns may limit its impact on the management of the pandemic. Digital PCR (RT-dPCR) has been shown to be highly sensitive and could help by providing larger testing capabilities without compromising sensitivity. Methods: We implemented RT-dPCR based COVID-19 group testing on a commercially available system and assay (naica® system from Stilla Technologies) and investigated the sensitivity of the method in real life conditions of a university hospital in Paris, France, in May 2020. We tested the protocol in a direct comparison with reference RT-PCR testing on 448 samples split into groups of 8, 16 and 32 samples for RT-dPCR analysis. Results: Individual RT-PCR testing identified 25/448 positive samples. Using 56 groups of 8, RT-dPCR identified 23 groups as positive, corresponding to 26 positive samples by individual PCR (positive percentage agreement 95.2% [95% confidence interval: 76.2–99.9%]) and including 2 samples not detected by individual RT-PCR but confirmed positive by further investigation. 15 of 28 groups of 16 tested positive, corresponding to 25 positive samples by individual PCR (positive percentage agreement 87.5% [95% confidence interval: 61.7–98.4%]). 14 groups of 32 were fully concordant with individual PCR testing but will need to be confirmed on larger datasets. Conclusions: Our proposed approach of group testing by digital PCR has similar diagnostic sensitivity compared to individual RT-PCR testing for group up to 16 samples. This approach reduces the quantity of reagent needed by up to 80% while reducing costs and increasing capabilities of testing up to 10-fold.
Original language | English (US) |
---|---|
Article number | 104895 |
Journal | Journal of Clinical Virology |
Volume | 141 |
DOIs | |
State | Published - Aug 2021 |
Keywords
- COVID-19
- Digital PCR
- Group testing
- RT-PCR
- Sample pooling
- SARS-CoV-2
ASJC Scopus subject areas
- Virology
- Infectious Diseases