High-Throughput Metabolic Profiling for Model Refinements of Microalgae

Amnah Alzahmi, Sarah Daakour, Diana Charles El Assal, Bushra S. Dohai, Amphun Chaiboonchoe, Weiqi Fu, David R. Nelson, Alexandra Mystikou, Kourosh Salehi-Ashtiani

Research output: Contribution to journalArticlepeer-review


Metabolic models are reconstructed based on an organism's available genome annotation and provide predictive tools to study metabolic processes at a systemslevel. Genome-scale metabolic models may include gaps as well as reactions that are unverified experimentally. Reconstructed models of newly isolated microalgal species will result in weaknesses due to these gaps, as there is usually sparse biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology is an effective, high-throughput method that functionally determines cellular metabolic activities in response to a wide array of entry metabolites. Combining the high throughput phenotypic assays with metabolic modeling can allow existing metabolic network models to be rapidly reconstructed or optimized by providing biochemical evidence to support and expand genomic evidence. This work will show the use of PM assays for the study of microalgae by using the green microalgal model species Chlamydomonas reinhardtii as an example. Experimental evidence for over 254 reactions obtained by PM was used in this study to expand and refine a genome-scale C. reinhardtii metabolic network model, iRC1080, by approximately 25 percent. The protocol created here can be used as a basis for functionally profiling the metabolism of other microalgae, including known microalgae mutants and new isolates.

Original languageEnglish (US)
Article numbere61913
JournalJournal of Visualized Experiments
Issue number178
StatePublished - Dec 2021

ASJC Scopus subject areas

  • General Neuroscience
  • General Chemical Engineering
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology


Dive into the research topics of 'High-Throughput Metabolic Profiling for Model Refinements of Microalgae'. Together they form a unique fingerprint.

Cite this