TY - JOUR
T1 - Hints on the nature of dark matter from the properties of Milky Way satellites
AU - Anderhalden, Donnino
AU - Schneider, Aurel
AU - MacCiò, Andrea V.
AU - Diemand, Juerg
AU - Bertone, Gianfranco
PY - 2013/3
Y1 - 2013/3
N2 - The nature of dark matter is still unknown and one of the most fundamental scientific mysteries. Although successfully describing large scales, the standard cold dark matter model (CDM) exhibits possible shortcomings on galactic and sub-galactic scales. It is exactly at these highly non-linear scales where strong astrophysical constraints can be set on the nature of the dark matter particle. While observations of the Lyman-α forest probe the matter power spectrum in the mildly non-linear regime, satellite galaxies of the Milky Way provide an excellent laboratory as a test of the underlying cosmology on much smaller scales. Here we present results from a set of high resolution simulations of a Milky Way sized dark matter halo in eight distinct cosmologies: CDM, warm dark matter (WDM) with a particle mass of 2 keV and six different cold plus warm dark matter (C+WDM) models, varying the fraction, f wdm, and the mass, mwdm, of the warm component. We used three different observational tests based on Milky Way satellite observations: the total satellite abundance, their radial distribution and their mass profile. We show that the requirement of simultaneously satisfying all three constraints sets very strong limits on the nature of dark matter. This shows the power of a multi-dimensional small scale approach in ruling out models which would be still allowed by large scale observations.
AB - The nature of dark matter is still unknown and one of the most fundamental scientific mysteries. Although successfully describing large scales, the standard cold dark matter model (CDM) exhibits possible shortcomings on galactic and sub-galactic scales. It is exactly at these highly non-linear scales where strong astrophysical constraints can be set on the nature of the dark matter particle. While observations of the Lyman-α forest probe the matter power spectrum in the mildly non-linear regime, satellite galaxies of the Milky Way provide an excellent laboratory as a test of the underlying cosmology on much smaller scales. Here we present results from a set of high resolution simulations of a Milky Way sized dark matter halo in eight distinct cosmologies: CDM, warm dark matter (WDM) with a particle mass of 2 keV and six different cold plus warm dark matter (C+WDM) models, varying the fraction, f wdm, and the mass, mwdm, of the warm component. We used three different observational tests based on Milky Way satellite observations: the total satellite abundance, their radial distribution and their mass profile. We show that the requirement of simultaneously satisfying all three constraints sets very strong limits on the nature of dark matter. This shows the power of a multi-dimensional small scale approach in ruling out models which would be still allowed by large scale observations.
KW - cosmological simulations
KW - dark matter theory
UR - http://www.scopus.com/inward/record.url?scp=84875834392&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84875834392&partnerID=8YFLogxK
U2 - 10.1088/1475-7516/2013/03/014
DO - 10.1088/1475-7516/2013/03/014
M3 - Article
AN - SCOPUS:84875834392
SN - 1475-7516
VL - 2013
JO - Journal of Cosmology and Astroparticle Physics
JF - Journal of Cosmology and Astroparticle Physics
IS - 3
M1 - 014
ER -