Abstract
Objectives: To evaluate the impact of HIV infection on colonization resistance in the proximal gut. Design: It was a case-control study. Methods: We contrasted microbiota composition between eight HIV-1-infected patients and eight HIV-negative controls to characterize community alteration and detect exogenous bacteria in the esophagus, stomach, and duodenum, as well as the mouth using a universal 16s ribosomal RNA gene survey and correlated the findings with HIV serostatus and peripheral blood T-cell counts. Results: HIV infection was associated with an enrichment of Proteobacteria (P=0.020) and depletion of Firmicutes (P = 0.005) in the proximal gut. In particular, environmental species Burkholderia fungorum and Bradyrhizobium pachyrhizi colonized the duodenum of HIV patients who had abnormal blood CD4 + T-cell counts but were absent in HIV-negative controls or HIV patients whose CD4 + cell counts were normal. The two species coexisted and exhibited a decreasing trend proximally toward the stomach and esophagus and were virtually absent in the mouth. B. fungorum always outnumbered B. pachyrhizi in a ratio of approximately 15 to 1 regardless of the body sites (P < 0.0001, r 2 = 0.965). Their abundance was inversely correlated with CD4 + cell counts (P = 0.004) but not viral load. Overgrowth of potential opportunistic pathogens for example, Prevotella, Fusobacterium, and Ralstonia and depletion of beneficial bacteria, for example, Lactobacillus was also observed in HIV patients. Conclusions: The colonization of the duodenum by environmental bacteria reflects loss of colonization resistance in HIV infection. Their correlation with CD4 + cell counts suggests that compromised immunity could be responsible for the observed invasion by exogenous microbes.
Original language | English (US) |
---|---|
Pages (from-to) | 19-29 |
Number of pages | 11 |
Journal | AIDS |
Volume | 30 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2 2016 |
Keywords
- Bradyrhizobium pachyrhizi
- Burkholderia fungorum
- CD4 +
- HIV-1
- Lactobacillus
- colonization resistance
- duodenum
- dysbiosis
- environmental bacteria
- microbiome
- microbiota
- proximal gut
ASJC Scopus subject areas
- Immunology and Allergy
- Immunology
- Infectious Diseases