How do decoding algorithms distribute information in dialogue responses?

Saranya Venkatraman, He He, David Reitter

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Humans tend to follow the Uniform Information Density (UID) principle by distributing information evenly in utterances. We study if decoding algorithms implicitly follow this UID principle, and under what conditions adherence to UID might be desirable for dialogue generation. We generate responses using different decoding algorithms with GPT-2 on the Persona-Chat dataset and collect human judgments on their quality using Amazon Mechanical Turk. We find that (i) surprisingly, model-generated responses follow the UID principle to a greater extent than human responses, and (ii) decoding algorithms that promote UID do not generate higher-quality responses. Instead, when we control for surprisal, non-uniformity of information density correlates with the quality of responses with very low/high surprisal. Our findings indicate that encouraging non-uniform responses is a potential solution to the “likelihood trap” problem (quality degradation in very high-likelihood text). Our dataset containing multiple candidate responses per dialog history along with human-annotated quality ratings is available at: https://huggingface.co/datasets/saranya132/dialog_uid_gpt2.

Original languageEnglish (US)
Title of host publicationEACL 2023 - 17th Conference of the European Chapter of the Association for Computational Linguistics, Findings of EACL 2023
PublisherAssociation for Computational Linguistics (ACL)
Pages923-932
Number of pages10
ISBN (Electronic)9781959429470
StatePublished - 2023
Event17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023 - Findings of EACL 2023 - Dubrovnik, Croatia
Duration: May 2 2023May 6 2023

Publication series

NameEACL 2023 - 17th Conference of the European Chapter of the Association for Computational Linguistics, Findings of EACL 2023

Conference

Conference17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023 - Findings of EACL 2023
Country/TerritoryCroatia
CityDubrovnik
Period5/2/235/6/23

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Software
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'How do decoding algorithms distribute information in dialogue responses?'. Together they form a unique fingerprint.

Cite this