How hard is inference for structured prediction?

Amir Globerson, Tim Roughgarden, David Sontag, Cafer Yildirim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Structured prediction tasks in machine learning involve the simultaneous prediction of multiple labels. This is often done by maximizing a score function on the space of labels, which decomposes as a sum of pairwise elements, each depending on two specific labels. The goal of this paper is to develop a theoretical explanation of the empirical effectiveness of heuristic inference algorithms for solving such structured prediction problems. We study the minimum-achievable expected Hamming error in such problems, highlighting the case of 2D grid graphs, which are common in machine vision applications. Our main theorems provide tight upper and lower bounds on this error, as well as a polynomial-time algorithm that achieves the bound.

Original languageEnglish (US)
Title of host publication32nd International Conference on Machine Learning, ICML 2015
EditorsFrancis Bach, David Blei
PublisherInternational Machine Learning Society (IMLS)
Pages2171-2180
Number of pages10
ISBN (Electronic)9781510810587
StatePublished - 2015
Event32nd International Conference on Machine Learning, ICML 2015 - Lile, France
Duration: Jul 6 2015Jul 11 2015

Publication series

Name32nd International Conference on Machine Learning, ICML 2015
Volume3

Other

Other32nd International Conference on Machine Learning, ICML 2015
CountryFrance
CityLile
Period7/6/157/11/15

ASJC Scopus subject areas

  • Human-Computer Interaction
  • Computer Science Applications

Fingerprint Dive into the research topics of 'How hard is inference for structured prediction?'. Together they form a unique fingerprint.

Cite this