How source/collector placement and subsurface absorbing layer affect time-resolved and phase/modulation-resolved photon migration

Steven L. Jacques, Andreas H. Hielscher, Lihong Wang, Frank K. Tittel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The time-resolved reflectance of photons from a homogeneous tissue was modeled using a Monte Carlo simulation. The data was then converted by fast Fourier transform (FFT) into the frequency domain. In the frequency domain, the phase, Φ, and modulation, M, of collected light from a frequency-modulated light source was determined. A comparison of Monte Carlo and diffusion theory was made for various separation distances between the source and collector on the tissue surface. The results showed that Monte Carlo and diffusion theory agreed in the time domain only for times larger than 500 ps after injection of an impulse of photons. In the frequency domain, Monte Carlo and diffusion theory agreed only if the probe separation, r, was at least 2 cm apart for μs′ = μs(1 - g) = 5 cm-1, or in dimension less units rμs′ > 10. The effect of buried absorbed is also tested in the time and frequency domains. A semi-infinite volume of absorber is placed at 0, 3 mm, 6 mm, or ∞ from the surface of a nonabsorbing tissue. The presence of a deep absorber on the time and frequency domain data show that attenuation of longer pathlength photons causes the phase of collected photons to reduce and the modulation of collected photons to increase. Both effects are indicative of the net shorter pathlength of the ensemble of collected photons.

Original languageEnglish (US)
Title of host publicationProceedings of SPIE - The International Society for Optical Engineering
EditorsBritton Chance, Robert R. Alfano
PublisherPubl by Society of Photo-Optical Instrumentation Engineers
Pages310-319
Number of pages10
ISBN (Print)0819411159
StatePublished - 1993

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume1888
ISSN (Print)0277-786X

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'How source/collector placement and subsurface absorbing layer affect time-resolved and phase/modulation-resolved photon migration'. Together they form a unique fingerprint.

Cite this