TY - GEN
T1 - How source/collector placement and subsurface absorbing layer affect time-resolved and phase/modulation-resolved photon migration
AU - Jacques, Steven L.
AU - Hielscher, Andreas H.
AU - Wang, Lihong
AU - Tittel, Frank K.
N1 - Copyright:
Copyright 2003 Elsevier Science B.V., Amsterdam. All rights reserved.
PY - 1993
Y1 - 1993
N2 - The time-resolved reflectance of photons from a homogeneous tissue was modeled using a Monte Carlo simulation. The data was then converted by fast Fourier transform (FFT) into the frequency domain. In the frequency domain, the phase, Φ, and modulation, M, of collected light from a frequency-modulated light source was determined. A comparison of Monte Carlo and diffusion theory was made for various separation distances between the source and collector on the tissue surface. The results showed that Monte Carlo and diffusion theory agreed in the time domain only for times larger than 500 ps after injection of an impulse of photons. In the frequency domain, Monte Carlo and diffusion theory agreed only if the probe separation, r, was at least 2 cm apart for μs′ = μs(1 - g) = 5 cm-1, or in dimension less units rμs′ > 10. The effect of buried absorbed is also tested in the time and frequency domains. A semi-infinite volume of absorber is placed at 0, 3 mm, 6 mm, or ∞ from the surface of a nonabsorbing tissue. The presence of a deep absorber on the time and frequency domain data show that attenuation of longer pathlength photons causes the phase of collected photons to reduce and the modulation of collected photons to increase. Both effects are indicative of the net shorter pathlength of the ensemble of collected photons.
AB - The time-resolved reflectance of photons from a homogeneous tissue was modeled using a Monte Carlo simulation. The data was then converted by fast Fourier transform (FFT) into the frequency domain. In the frequency domain, the phase, Φ, and modulation, M, of collected light from a frequency-modulated light source was determined. A comparison of Monte Carlo and diffusion theory was made for various separation distances between the source and collector on the tissue surface. The results showed that Monte Carlo and diffusion theory agreed in the time domain only for times larger than 500 ps after injection of an impulse of photons. In the frequency domain, Monte Carlo and diffusion theory agreed only if the probe separation, r, was at least 2 cm apart for μs′ = μs(1 - g) = 5 cm-1, or in dimension less units rμs′ > 10. The effect of buried absorbed is also tested in the time and frequency domains. A semi-infinite volume of absorber is placed at 0, 3 mm, 6 mm, or ∞ from the surface of a nonabsorbing tissue. The presence of a deep absorber on the time and frequency domain data show that attenuation of longer pathlength photons causes the phase of collected photons to reduce and the modulation of collected photons to increase. Both effects are indicative of the net shorter pathlength of the ensemble of collected photons.
UR - http://www.scopus.com/inward/record.url?scp=0027711494&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027711494&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:0027711494
SN - 0819411159
T3 - Proceedings of SPIE - The International Society for Optical Engineering
SP - 310
EP - 319
BT - Proceedings of SPIE - The International Society for Optical Engineering
A2 - Chance, Britton
A2 - Alfano, Robert R.
PB - Publ by Society of Photo-Optical Instrumentation Engineers
ER -