Abstract
A V-shape is an infinite polygonal region bounded by two pairs of parallel rays emanating from two vertices (see Figure 1). We describe a randomized algorithm that, given n points and an integer k ≥ 0, finds the minimum-width V-shape enclosing all but k of the points with probability 1 - 1/nc for any c > 0, with expected running time O(cn2(k + 1)4 log n(log n log log n + k)).
Original language | English (US) |
---|---|
Pages | 211-215 |
Number of pages | 5 |
State | Published - 2013 |
Event | 25th Canadian Conference on Computational Geometry, CCCG 2013 - Waterloo, Canada Duration: Aug 8 2013 → Aug 10 2013 |
Other
Other | 25th Canadian Conference on Computational Geometry, CCCG 2013 |
---|---|
Country/Territory | Canada |
City | Waterloo |
Period | 8/8/13 → 8/10/13 |
ASJC Scopus subject areas
- Geometry and Topology
- Computational Mathematics