TY - GEN
T1 - Hybrid risk-sensitive mean-field stochastic differential games with application to molecular biology
AU - Zhu, Quanyan
AU - Tembine, Hamidou
AU - Başar, Tamer
PY - 2011
Y1 - 2011
N2 - We consider a class of mean-field nonlinear stochastic differential games (resulting from stochastic differential games in a large population regime) with risk-sensitive cost functions and two types of uncertainties: continuous-time disturbances (of Brownian motion type) and event-driven random switching. Under some regularity conditions, we first study the best response of the players to the mean field, and then characterize the (strongly time-consistent Nash) equilibrium solution in terms of backward-forward macroscopic McKean-Vlasov (MV) equations, Fokker-Planck-Kolmogorov (FPK) equations, and Hamilton-Jacobi- Bellman (HJB) equations. We then specialize the solution to linear-quadratic mean-field stochastic differential games, and study in this framework the optimal transport of the GlpF transmembrane channel of Escherichia coli, where glycerol molecules (as players in the game) choose forces to achieve optimal transport through the membrane. Simulation studies show that GlpF improves the glycerol conduction more in a higher periplasmic glycerol concentration, which is consistent with observations made in the biophysics literature.
AB - We consider a class of mean-field nonlinear stochastic differential games (resulting from stochastic differential games in a large population regime) with risk-sensitive cost functions and two types of uncertainties: continuous-time disturbances (of Brownian motion type) and event-driven random switching. Under some regularity conditions, we first study the best response of the players to the mean field, and then characterize the (strongly time-consistent Nash) equilibrium solution in terms of backward-forward macroscopic McKean-Vlasov (MV) equations, Fokker-Planck-Kolmogorov (FPK) equations, and Hamilton-Jacobi- Bellman (HJB) equations. We then specialize the solution to linear-quadratic mean-field stochastic differential games, and study in this framework the optimal transport of the GlpF transmembrane channel of Escherichia coli, where glycerol molecules (as players in the game) choose forces to achieve optimal transport through the membrane. Simulation studies show that GlpF improves the glycerol conduction more in a higher periplasmic glycerol concentration, which is consistent with observations made in the biophysics literature.
UR - http://www.scopus.com/inward/record.url?scp=84860674708&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860674708&partnerID=8YFLogxK
U2 - 10.1109/CDC.2011.6161035
DO - 10.1109/CDC.2011.6161035
M3 - Conference contribution
AN - SCOPUS:84860674708
SN - 9781612848006
T3 - Proceedings of the IEEE Conference on Decision and Control
SP - 4491
EP - 4497
BT - 2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
Y2 - 12 December 2011 through 15 December 2011
ER -