TY - JOUR
T1 - Identification and structural characterization of an unusual RING-like sequence within an extracellular biomineralization protein, AP7
AU - Collino, Sebastiano
AU - Kim, Il Kim
AU - Evans, John Spencer
PY - 2008/3/25
Y1 - 2008/3/25
N2 - The RING or Really Interesting New Gene represents a family of eukaryotic sequences that bind Zn (II) ions and participate in intracellular processes involving protein-protein interaction. Although found in over 400 different proteins, very little is known regarding the structure-function properties of these domains because of the aggregation problems associated with RING sequences. To augment this data set, we report an unusual 36 AA C-terminal sequence of an extracellular matrix mollusk shell protein, AP7, that exhibits partial homology to the RING family. This Cys, His-containing sequence, termed AP7C, binds Zn (II) and other multivalent ions, but does not utilize a tetracoordinate complexation scheme for binding such as that found in Zn (II) finger polypeptides. Moreover, unlike Zn (II) finger and RING domains, this 36 AA can fold into a relatively stable structure in the absence of Zn (II). This folded structure consists of three short helical segments (A, B, and C), with segments A and B separated by a 4 AA type I β-turn region and segments B and C separated by a 7 AA loop-like region. Interestingly, the putative RING-like region, -RRPFHECALCYSI-, experiences slow conformational exchange between two structural states in solution, most likely in response to imido ring interconversion at P8 and P21. Poisson-Boltzmann solvation calculations reveal that the AP7C molecular surface possesses a cationic region near its N-terminus, which lies adjacent to the 30 AA mineral modification domain in the AP7 protein. Given that the AP7C sequence does not influence mineralization, it is probable that this cationic pseudo-RING region is utilized by the AP7 protein for other tasks such as protein-protein interaction within the mollusk shell matrix.
AB - The RING or Really Interesting New Gene represents a family of eukaryotic sequences that bind Zn (II) ions and participate in intracellular processes involving protein-protein interaction. Although found in over 400 different proteins, very little is known regarding the structure-function properties of these domains because of the aggregation problems associated with RING sequences. To augment this data set, we report an unusual 36 AA C-terminal sequence of an extracellular matrix mollusk shell protein, AP7, that exhibits partial homology to the RING family. This Cys, His-containing sequence, termed AP7C, binds Zn (II) and other multivalent ions, but does not utilize a tetracoordinate complexation scheme for binding such as that found in Zn (II) finger polypeptides. Moreover, unlike Zn (II) finger and RING domains, this 36 AA can fold into a relatively stable structure in the absence of Zn (II). This folded structure consists of three short helical segments (A, B, and C), with segments A and B separated by a 4 AA type I β-turn region and segments B and C separated by a 7 AA loop-like region. Interestingly, the putative RING-like region, -RRPFHECALCYSI-, experiences slow conformational exchange between two structural states in solution, most likely in response to imido ring interconversion at P8 and P21. Poisson-Boltzmann solvation calculations reveal that the AP7C molecular surface possesses a cationic region near its N-terminus, which lies adjacent to the 30 AA mineral modification domain in the AP7 protein. Given that the AP7C sequence does not influence mineralization, it is probable that this cationic pseudo-RING region is utilized by the AP7 protein for other tasks such as protein-protein interaction within the mollusk shell matrix.
UR - http://www.scopus.com/inward/record.url?scp=41149147572&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=41149147572&partnerID=8YFLogxK
U2 - 10.1021/bi701949p
DO - 10.1021/bi701949p
M3 - Article
C2 - 18298090
AN - SCOPUS:41149147572
SN - 0006-2960
VL - 47
SP - 3745
EP - 3755
JO - Biochemistry
JF - Biochemistry
IS - 12
ER -