Identifying multiscale hidden states to decode behavior

Hamidreza Abbaspourazad, Yan Wong, Bijan Pesaran, Maryam M. Shanechi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A key element needed in a brain-machine interface (BMI) decoder is the encoding model, which relates the neural activity to intended movement. The vast majority of work have used a representational encoding model, which assumes movement parameters are directly encoded in neural activity. Recent work have in turn suggested the existence of neural dynamics that represent behavior. This recent evidence motivates developing dynamical encoding models with hidden states that encode movement. Regardless of their type, encoding models have vastly characterized a single scale of activity, e.g., either spikes or local field potentials (LFP). In our recent work we developed a multiscale representational encoding model to simultaneously characterize and decode discrete spikes and continuous field activity. However, learning a multiscale dynamical model from simultaneous spike-field recordings in the presence of hidden states is challenging. Here we present an unsupervised learning algorithm for estimating a multiscale state-space model with hidden states and validate it using spike-LFP activity during a reaching movement. We use the learned multiscale statespace model and a corresponding decoder to identify hidden states from spike-LFP activity. We then decode the movement trajectories using these hidden states. We find that the identified states can accurately decode the trajectories. Moreover, we demonstrate that adding LFP to spikes improves the decoding accuracy, suggesting that our unsupervised learning algorithm incorporates information across scales. This learning algorithm could serve as a new tool to study encoding across scales and to enhance future BMI systems.

Original languageEnglish (US)
Title of host publication40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3778-3781
Number of pages4
ISBN (Electronic)9781538636466
DOIs
StatePublished - Oct 26 2018
Event40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 - Honolulu, United States
Duration: Jul 18 2018Jul 21 2018

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2018-July
ISSN (Print)1557-170X

Other

Other40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
CountryUnited States
CityHonolulu
Period7/18/187/21/18

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Identifying multiscale hidden states to decode behavior'. Together they form a unique fingerprint.

  • Cite this

    Abbaspourazad, H., Wong, Y., Pesaran, B., & Shanechi, M. M. (2018). Identifying multiscale hidden states to decode behavior. In 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 (pp. 3778-3781). [8513242] (Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS; Vol. 2018-July). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/EMBC.2018.8513242