Identifying predictive causal factors from news streams

Ananth Balashankar, Sunandan Chakraborty, Samuel Fraiberger, Lakshminarayanan Subramanian

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose a new framework to uncover the relationship between news events and real world phenomena. We present the Predictive Causal Graph (PCG) which allows to detect latent relationships between events mentioned in news streams. This graph is constructed by measuring how the occurrence of a word in the news influences the occurrence of another (set of) word(s) in the future. We show that PCG can be used to extract latent features from news streams, outperforming other graph-based methods in prediction error of 10 stock price time series for 12 months. We then extended PCG to be applicable for longer time windows by allowing time-varying factors, leading to stock price prediction error rates between 1.5% and 5% for about 4 years. We then manually validated PCG, finding that 67% of the causation semantic frame arguments present in the news corpus were directly connected in the PCG, the remaining being connected through a semantically relevant intermediate node.

Original languageEnglish (US)
Title of host publicationEMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
PublisherAssociation for Computational Linguistics
Pages2338-2348
Number of pages11
ISBN (Electronic)9781950737901
StatePublished - 2019
Event2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019 - Hong Kong, China
Duration: Nov 3 2019Nov 7 2019

Publication series

NameEMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference

Conference

Conference2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019
Country/TerritoryChina
CityHong Kong
Period11/3/1911/7/19

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'Identifying predictive causal factors from news streams'. Together they form a unique fingerprint.

Cite this