Identifying video spammers in online social networks

Fabricio Benevenuto, Tiago Rodrigues, Virgilio Almeida, Jussara Almeida, Chao Zhang, Keith Ross

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Abstract

    In many video social networks, including YouTube, users are permitted to post video responses to other users' videos. Such a response can be legitimate or can be a video response spam, which is a video response whose content is not related to the topic being discussed. Malicious users may post video response spam for several reasons, including increase the popularity of a video, marketing advertisements, distribute pornography, or simply pollute the system. In this paper we consider the problem of detecting video spammers. We first construct a large test collection of YouTube users, and manually classify them as either legitimate users or spammers. We then devise a number of attributes of video users and their social behavior which could potentially be used to detect spammers. Employing these attributes, we apply machine learning to provide a heuristic for classifying an arbitrary video as either legitimate or spam. The machine learning algorithm is trained with our test collection. We then show that our approach succeeds at detecting much of the spam while only falsely classifying a small percentage of the legitimate videos as spam. Our results highlight the most important attributes for video response spam detection.

    Original languageEnglish (US)
    Title of host publicationAIRWeb 2008 - Proceedings of the 4th International Workshop on Adversarial Information Retrieval on the Web
    Pages45-52
    Number of pages8
    DOIs
    StatePublished - 2008
    Event4th International Workshop on Adversarial Information Retrieval on the Web, AIRWeb 2008 - Beijing, China
    Duration: Apr 22 2008Apr 22 2008

    Publication series

    NameAIRWeb 2008 - Proceedings of the 4th International Workshop on Adversarial Information Retrieval on the Web

    Other

    Other4th International Workshop on Adversarial Information Retrieval on the Web, AIRWeb 2008
    CountryChina
    CityBeijing
    Period4/22/084/22/08

    Keywords

    • Social network
    • Video response
    • Video spam

    ASJC Scopus subject areas

    • Computer Networks and Communications
    • Information Systems

    Fingerprint Dive into the research topics of 'Identifying video spammers in online social networks'. Together they form a unique fingerprint.

    Cite this