Abstract
Energy transfer experiments are carried out at dilute concentrations of donors (10-4 M, coumarine 334) and acceptors (5×10-6 M, sulforhodamine 101) in a levitated microdroplet (diameter, 2a = 19 μm), using an aerosol particle fluorescence microscope. Microphotographs in donor and acceptor luminescence show that the transfer mechanism is not of a Förster type, but is mediated by morphology dependent resonances (MDRs) of the microdroplet. The transfer is vanishingly small in the central region of the droplet (r<0.9a), and grows to a pronounced maximum beneath the surface (active region), consistent with the theory of MDR-enhanced energy transfer. The angular intensity profile of the acceptor image, along with current theory, suggests that the energy transfer is a maximum with the donor and acceptor at equal distances on opposite sides of the droplet center, ∼18 μm apart. From photometry we measure an overall ratio of acceptor to total luminescence of 7%. Within the active region the transfer efficiency is above 50%. This yield is ∼1000× that expected from Förster transfer. This effect may be understood from a modification in the photon density of states in this region, which leads to efficient photon emission into MDRs.
Original language | English (US) |
---|---|
Pages (from-to) | 7741-7747 |
Number of pages | 7 |
Journal | Journal of Chemical Physics |
Volume | 104 |
Issue number | 19 |
DOIs | |
State | Published - 1996 |
ASJC Scopus subject areas
- General Physics and Astronomy
- Physical and Theoretical Chemistry