## Abstract

Background: Vaccination of infants with pneumococcal conjugate vaccines is recommended by the World Health Organization. Evidence is mixed regarding the differences in immunogenicity and efficacy of the different pneumococcal vaccines. Objectives: The primary objective was to compare the immunogenicity of pneumococcal conjugate vaccine-10 versus pneumococcal conjugate vaccine-13. The main secondary objective was to compare the seroefficacy of pneumococcal conjugate vaccine-10 versus pneumococcal conjugate vaccine-13. Methods: We searched the Cochrane Library, EMBASE, Global Health, MEDLINE, ClinicalTrials.gov and trialsearch.who.int up to July 2022. Studies were eligible if they directly compared either pneumococcal conjugate vaccine-7, pneumococcal conjugate vaccine-10 or pneumococcal conjugate vaccine-13 in randomised trials of children under 2 years of age, and provided immunogenicity data for at least one time point. Individual participant data were requested and aggregate data used otherwise. Outcomes included the geometric mean ratio of serotype-specific immunoglobulin G and the relative risk of seroinfection. Seroinfection was defined for each individual as a rise in antibody between the post-primary vaccination series time point and the booster dose, evidence of presumed subclinical infection. Each trial was analysed to obtain the log of the ratio of geometric means and its standard error. The relative risk of seroinfection (‘seroefficacy’) was estimated by comparing the proportion of participants with seroinfection between vaccine groups. The log-geometric mean ratios, log-relative risks and their standard errors constituted the input data for evidence synthesis. For serotypes contained in all three vaccines, evidence could be synthesised using a network meta-analysis. For other serotypes, meta-analysis was used. Results from seroefficacy analyses were incorporated into a mathematical model of pneumococcal transmission dynamics to compare the differential impact of pneumococcal conjugate vaccine-10 and pneumococcal conjugate vaccine-13 introduction on invasive pneumococcal disease cases. The model estimated the impact of vaccine introduction over a 25-year time period and an economic evaluation was conducted. Results: In total, 47 studies were eligible from 38 countries. Twenty-eight and 12 studies with data available were included in immunogenicity and seroefficacy analyses, respectively. Geometric mean ratios comparing pneumococcal conjugate vaccine-13 versus pneumococcal conjugate vaccine-10 favoured pneumococcal conjugate vaccine-13 for serotypes 4, 9V and 23F at 1 month after primary vaccination series, with 1.14- to 1.54-fold significantly higher immunoglobulin G responses with pneumococcal conjugate vaccine-13. Risk of seroinfection prior to the time of booster dose was lower for pneumococcal conjugate vaccine-13 for serotype 4, 6B, 9V, 18C and 23F than for pneumococcal conjugate vaccine-10. Significant heterogeneity and inconsistency were present for most serotypes and for both outcomes. Twofold higher antibody after primary vaccination was associated with a 54% decrease in risk of seroinfection (relative risk 0.46, 95% confidence interval 0.23 to 0.96). In modelled scenarios, pneumococcal conjugate vaccine-13 or pneumococcal conjugate vaccine-10 introduction in 2006 resulted in a reduction in cases that was less rapid for pneumococcal conjugate vaccine-10 than for pneumococcal conjugate vaccine-13. The pneumococcal conjugate vaccine-13 programme was predicted to avoid an additional 2808 (95% confidence interval 2690 to 2925) cases of invasive pneumococcal disease compared with pneumococcal conjugate vaccine-10 introduction between 2006 and 2030. Limitations: Analyses used data from infant vaccine studies with blood samples taken prior to a booster dose. The impact of extrapolating pre-booster efficacy to post-booster time points is unknown. Network meta-analysis models contained significant heterogeneity which may lead to bias. Conclusions: Serotype-specific differences were found in immunogenicity and seroefficacy between pneumococcal conjugate vaccine-13 and pneumococcal conjugate vaccine-10. Higher antibody response after vaccination was associated with a lower risk of subsequent infection. These methods can be used to compare the pneumococcal conjugate vaccines and optimise vaccination strategies. For future work, seroefficacy estimates can be determined for other pneumococcal vaccines, which could contribute to licensing or policy decisions for new pneumococcal vaccines.

Original language | English (US) |
---|---|

Journal | Health Technology Assessment |

Volume | 28 |

Issue number | 34 |

DOIs | |

State | Published - Jul 2024 |

## ASJC Scopus subject areas

- Health Policy