TY - GEN
T1 - Implicit approaches for moving boundaries in a 3-D Cartesian method
AU - Murman, Scott M.
AU - Aftosmis, Michael J.
AU - Berger, Marsha J.
PY - 2003/12/1
Y1 - 2003/12/1
N2 - Amethod for simulating moving impermeable boundaries within a fixed Cartesian mesh is described. The scheme leverages the automated volume mesh generation process which has previously been demonstrated for static geometries. An implicit dual-time method is used for the time advance, which limits the number of times the geometry must be intersected with the Cartesian volume mesh over a complete simulation. A general motion is decomposed into a rigid-body motion of the entire computational domain, with a relative-body motion superimposed. The rigid-domain motion is treated using an ALE formulation, which confines the required geometry processing only to the regions of relative motion within the domain. A detailed space-time analysis is used to present and discuss the moving-boundary scheme, with particular attention given to complexities arising in multiple dimensions. A hierarchy of conservative approximations for the evolution of the moving geometry over a timestep is presented. Preliminary results are discussed in one, two and three dimensions using CFL numbers based upon the moving wall velocity of between 1 and 20.
AB - Amethod for simulating moving impermeable boundaries within a fixed Cartesian mesh is described. The scheme leverages the automated volume mesh generation process which has previously been demonstrated for static geometries. An implicit dual-time method is used for the time advance, which limits the number of times the geometry must be intersected with the Cartesian volume mesh over a complete simulation. A general motion is decomposed into a rigid-body motion of the entire computational domain, with a relative-body motion superimposed. The rigid-domain motion is treated using an ALE formulation, which confines the required geometry processing only to the regions of relative motion within the domain. A detailed space-time analysis is used to present and discuss the moving-boundary scheme, with particular attention given to complexities arising in multiple dimensions. A hierarchy of conservative approximations for the evolution of the moving geometry over a timestep is presented. Preliminary results are discussed in one, two and three dimensions using CFL numbers based upon the moving wall velocity of between 1 and 20.
UR - http://www.scopus.com/inward/record.url?scp=84894874497&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84894874497&partnerID=8YFLogxK
M3 - Conference contribution
SN - 9781624100994
T3 - 41st Aerospace Sciences Meeting and Exhibit
BT - 41st Aerospace Sciences Meeting and Exhibit
T2 - 41st Aerospace Sciences Meeting and Exhibit 2003
Y2 - 6 January 2003 through 9 January 2003
ER -