TY - GEN
T1 - Implicit Neural Representations for Medical Imaging Segmentation
AU - Khan, Muhammad Osama
AU - Fang, Yi
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - 3D signals in medical imaging, such as CT scans, are usually parameterized as a discrete grid of voxels. For instance, existing state-of-the-art organ segmentation methods learn discrete segmentation maps. Unfortunately, the memory requirements of such methods grow cubically with increasing spatial resolution, which makes them unsuitable for processing high resolution scans. To overcome this, we design an Implicit Organ Segmentation Network (IOSNet) that utilizes continuous Implicit Neural Representations and has several useful properties. Firstly, the IOSNet decoder memory is roughly constant and independent of the spatial resolution since it parameterizes the segmentation map as a continuous function. Secondly, IOSNet converges much faster than discrete voxel based methods due to its ability to accurately segment organs irrespective of organ sizes, thereby alleviating size imbalance issues without requiring any auxiliary tricks. Thirdly, IOSNet naturally supports super-resolution (i.e. sampling at arbitrary resolutions during inference) due to its continuous learnt representations. Moreover, despite using a simple lightweight decoder, IOSNet consistently outperforms the discrete specialized segmentation architecture UNet. Hence, our approach demonstrates that Implicit Neural Representations are well-suited for medical imaging applications, especially for processing high-resolution 3D medical scans.
AB - 3D signals in medical imaging, such as CT scans, are usually parameterized as a discrete grid of voxels. For instance, existing state-of-the-art organ segmentation methods learn discrete segmentation maps. Unfortunately, the memory requirements of such methods grow cubically with increasing spatial resolution, which makes them unsuitable for processing high resolution scans. To overcome this, we design an Implicit Organ Segmentation Network (IOSNet) that utilizes continuous Implicit Neural Representations and has several useful properties. Firstly, the IOSNet decoder memory is roughly constant and independent of the spatial resolution since it parameterizes the segmentation map as a continuous function. Secondly, IOSNet converges much faster than discrete voxel based methods due to its ability to accurately segment organs irrespective of organ sizes, thereby alleviating size imbalance issues without requiring any auxiliary tricks. Thirdly, IOSNet naturally supports super-resolution (i.e. sampling at arbitrary resolutions during inference) due to its continuous learnt representations. Moreover, despite using a simple lightweight decoder, IOSNet consistently outperforms the discrete specialized segmentation architecture UNet. Hence, our approach demonstrates that Implicit Neural Representations are well-suited for medical imaging applications, especially for processing high-resolution 3D medical scans.
KW - Implicit Neural Representations
KW - Segmentation
UR - http://www.scopus.com/inward/record.url?scp=85139042556&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139042556&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-16443-9_42
DO - 10.1007/978-3-031-16443-9_42
M3 - Conference contribution
AN - SCOPUS:85139042556
SN - 9783031164422
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 433
EP - 443
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
A2 - Wang, Linwei
A2 - Dou, Qi
A2 - Fletcher, P. Thomas
A2 - Speidel, Stefanie
A2 - Li, Shuo
PB - Springer Science and Business Media Deutschland GmbH
T2 - 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Y2 - 18 September 2022 through 22 September 2022
ER -