Improving a model of human planning via large-scale data and deep neural networks

Ionatan Kuperwajs, Heiko Schütt, Wei Ji Ma

Research output: Contribution to conferencePaperpeer-review

Abstract

Models in cognitive science are often restricted for the sake of interpretability, and as a result may miss patterns in the data that are instead classified as noise. In contrast, deep neural networks can detect almost any pattern given sufficient data, but have only recently been applied to large-scale data sets and tasks for which there already exist process-level models to compare against. Here, we train deep neural networks to predict human play in 4-in-a-row, a combinatorial game of intermediate complexity, using a data set of 10, 874, 547 games. We compare these networks to a planning model based on a heuristic function and tree search, and make suggestions for model improvements based on this analysis. This work provides the foundation for estimating a noise ceiling on massive data sets as well as systematically investigating the processes underlying human sequential decision-making.

Original languageEnglish (US)
Pages1190-1196
Number of pages7
StatePublished - 2022
Event44th Annual Meeting of the Cognitive Science Society: Cognitive Diversity, CogSci 2022 - Toronto, Canada
Duration: Jul 27 2022Jul 30 2022

Conference

Conference44th Annual Meeting of the Cognitive Science Society: Cognitive Diversity, CogSci 2022
Country/TerritoryCanada
CityToronto
Period7/27/227/30/22

Keywords

  • behavioral modeling
  • machine learning
  • neural networks
  • planning
  • sequential decision-making

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Human-Computer Interaction
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Improving a model of human planning via large-scale data and deep neural networks'. Together they form a unique fingerprint.

Cite this