Abstract
Models in cognitive science are often restricted for the sake of interpretability, and as a result may miss patterns in the data that are instead classified as noise. In contrast, deep neural networks can detect almost any pattern given sufficient data, but have only recently been applied to large-scale data sets and tasks for which there already exist process-level models to compare against. Here, we train deep neural networks to predict human play in 4-in-a-row, a combinatorial game of intermediate complexity, using a data set of 10, 874, 547 games. We compare these networks to a planning model based on a heuristic function and tree search, and make suggestions for model improvements based on this analysis. This work provides the foundation for estimating a noise ceiling on massive data sets as well as systematically investigating the processes underlying human sequential decision-making.
Original language | English (US) |
---|---|
Pages | 1190-1196 |
Number of pages | 7 |
State | Published - 2022 |
Event | 44th Annual Meeting of the Cognitive Science Society: Cognitive Diversity, CogSci 2022 - Toronto, Canada Duration: Jul 27 2022 → Jul 30 2022 |
Conference
Conference | 44th Annual Meeting of the Cognitive Science Society: Cognitive Diversity, CogSci 2022 |
---|---|
Country/Territory | Canada |
City | Toronto |
Period | 7/27/22 → 7/30/22 |
Keywords
- behavioral modeling
- machine learning
- neural networks
- planning
- sequential decision-making
ASJC Scopus subject areas
- Artificial Intelligence
- Computer Science Applications
- Human-Computer Interaction
- Cognitive Neuroscience