Abstract
This paper is focused on several techniques that improve deep neural network (DNN) acoustic modeling for audio corpus indexing in the context of the IARPA Babel program. Specifically, fundamental frequency variation (FFV) and channelaware (CA) features and data augmentation based on stochastic feature mapping (SFM) are investigated not only for improved automatic speech recognition (ASR) performance but also for their impact to the final spoken term detection on the pre-indexed audio corpus. Experimental results on development languages of Babel option period one show that the improved DNN acoustic models can reduce word error rates in ASR and also help the keyword search performance compared to already competitive DNN baseline systems.
Original language | English (US) |
---|---|
Pages (from-to) | 2103-2107 |
Number of pages | 5 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
State | Published - 2014 |
Event | 15th Annual Conference of the International Speech Communication Association: Celebrating the Diversity of Spoken Languages, INTERSPEECH 2014 - Singapore, Singapore Duration: Sep 14 2014 → Sep 18 2014 |
Keywords
- Channel-aware
- Data augmentation
- Deep neural networks
- Fundamental frequency variation
- Stochastic feature mapping
ASJC Scopus subject areas
- Language and Linguistics
- Human-Computer Interaction
- Signal Processing
- Software
- Modeling and Simulation